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ABSTRACT 

THE EFFECTS OF VEHICLE AUTOMATION LEVEL AND WARNING TYPE ON 

RESPONSES TO VEHICLE HACKING 

 

Wyatt D. McManus 

Old Dominion University, 2019 

Director: Dr. Jing Chen 

 

Modern surface transportation vehicles often include different levels of automation. 

Higher automation levels have the potential to impact surface transportation in unforeseen ways. 

For example, connected vehicles with higher levels of automation are at a higher risk for hacking 

attempts, because automated driving assistance systems often rely on onboard sensors and 

internet connectivity. As the automation level of vehicle control rises, it is necessary to examine 

the effect of different levels of automation have on the driver-vehicle interactions. In addition, 

auditory warnings have been shown to effectively attract a driver’s attention while performing a 

driving task, which is often visually demanding. The purpose of the current study was to 

examine the effect of level of automation and warning type on the driver’s responses to vehicle 

hacking attempts. This goal was accomplished by manipulating level of automation (manual vs. 

automated) and warning type (non-semantic vs. semantic) and measuring drivers’ responses to a 

vehicle hacking attempt using time to collision (TTC) values, maximum steering wheel angle, 

number of successful responses, and other measures of response. Our results revealed no 

significant effect of level of automation or warning type on TTC or successful response rate. 

However, there was a significant effect of level of automation on maximum steering wheel angle 

such that manual drivers had safer responses to the hacking attempt with smaller maximum 

steering wheel angles. In addition, an effect of warning type that approached significance was 

also found for maximum steering wheel angle such that participants who received a semantic 

warning had more severe and dangerous responses to the hacking attempt. The current results 



www.manaraa.com

suggest that level of automation and warning type may not significantly affect how quickly 

people respond to hacking scenarios when the warning is given in advance, but they may affect 

the quality of the driver’s response. These findings are important to future vehicle system design 

and subsequently the safety of future roadways.  
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CHAPTER I 

INTRODUCTION 

The implementation of automated systems in modern surface transportation vehicles is an 

ongoing process. Autonomous and semi-autonomous vehicles are potentially extremely helpful 

and safer than human operated vehicles (Nunes, Reimer, & Coughlin, 2018), but before 

autonomous vehicles can be used there are risks and concerns that need researched and 

understood. Research has been conducted examining the effect of different levels of vehicle 

automation on the driver’s behavioral patterns (Gold, Damböck, Lorenz, & Bengler, 2013; 

Merat, Jamson, Lai, & Carsten, 2012; Shen & Neyens, 2017; Strand, Nilsson, Karlsson, & 

Nilsson, 2014). A vehicle hacking attempt, and the driver’s response, is an example of a modern 

critical event that could change with the use of manual and automated driving technologies 

(Amoozadeh et al., 2015; Strand et al., 2014). Malicious hacking attempts could cause 

catastrophic accidents with the potential for injuries to those in and around the vehicle when the 

control of the vehicle is taken from the driver or automated driving system. To prevent these 

attempts or to remedy the potential consequences of the attacks, it is important to understand 

how drivers will respond to such attempts when using manual or automated driving.  

Automated driving is different from manual driving in that the level of automation could 

affect the driver’s perception of relevant information from their dynamic environment, referred 

to as situation awareness (SA), and subsequently, the driver’s ability to respond to critical events 

such as cyberattacks. There has been little empirical research examining automated driving 

systems and manual driving in terms of which level of automation promotes safer responses to 

malicious hacking attempts. Amoozadeh et al. (2015) examined ways the vehicle could defend 

itself, such as lowering levels of automated control or potentially to manual control when an 
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attack occurred.  Although it is critical to design technology and automated systems to resist 

these attacks from a cyber-security perspective, it is also important to investigate how human 

drivers respond to hacking attempts at different levels of automation. In addition to level of 

automation, providing an auditory warning is one potential way to help drivers respond to critical 

events such as cyberattacks. Both sematic and non-semantic warnings have been used in 

different situations, with semantic warnings often containing additional information compared to 

non-semantic warnings (Chang, Lin, Fung, Hwang, & Doong, 2008; Hellier, Edworthy, Weedon, 

Walters, & Adams, 2002; McKeown & Isherwood, 2007). In the context of warnings about 

vehicle hacking attempts, the additional information provided by semantic warnings may 

improve responses to the hacking attempts that are relatively rare. The current study aimed to 

empirically explore the effect of level of automation and warning type on the operator’s 

responses to vehicle hacking attempts in a driving simulator. The outcome of this experiment 

was expected to inform the design of future vehicle systems that ensure efficient prevention of 

automated vehicle (AV) hacking attempts.   

Levels of Automation 

The degree to which a human-machine system is referred to as automated depends on 

how much control of the system is allocated to the automation or to the human. In the current 

context, level of automation refers to the use of different automated and manual systems for 

operating the vehicle and the amount of vehicle control allocated to the human. There is a 

theoretical spectrum of system control that, when simplified, vary from complete human control 

to complete automation control (Flemisch, Kelsch, Loper, Shieben, & Schindler, 2008). The 

spectrum of system control varies widely between manual and fully automated control with 

many of the current driver assistance technologies falling somewhere near the middle of the 
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spectrum. According to SAE (2018), autonomous vehicles can be categorized into six levels 

based on degree of automation. Level 0 has no driving automation and complete human control. 

As the level rises, more automation is implemented until Level 5, full system automation with no 

driver control required, is reached. For example, the introduction of automation to create more 

advanced driver assistance systems (ADAS) has created products that allow for automated 

control of different aspects of the vehicle system relevant to vehicle driving and control. 

Vehicles with one or more of these systems could serve as an example of a semi-autonomous 

system, for which control over the human-machine system is shared between the human and the 

automation.  

Level 3 conditional automated vehicles are capable of controlling the lateral (lane 

keeping) and longitudinal (speed and braking) aspects of driving and only require the driver to be 

prepared as fallback after the vehicle issues a warning or request (Petermeijer, Doubek, & de 

Winter, 2017; SAE, 2018). Vehicles that are capable of level 3 conditional automated driving are 

designed to operate within the functional limits of the vehicle system (Petermeijer et al., 2017). 

When the automation is no longer capable of controlling one or more aspects of vehicle control 

or it leaves its operational domain, the driver is warned, and a takeover request is issued (Gold et 

al., 2013; Petermeijer et al., 2017). The human’s response to takeover requests could change 

based upon the level of automation the vehicle is operating at (Carsten, Lai, Barnard, Jamson, 

and Merat, 2012; de Winter, Happee, Martens, & Stanton, 2014). The current experiment 

compared human responses to a critical event when using between Level 2 and 3 automation and 

Level 0 manual driving. 

For vehicles with conditional automated assistance technologies, monitoring the system’s 

performance is an additional task allocated to the driver (Petermeijer et al., 2017). The use of 
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automated systems as support for the driving task may decrease the attentional resources 

required for the driving task and as such the human may decide to allocate their attentional 

resources to secondary tasks. The human operator’s attentional resource allocation affects the 

operator’s ability to monitor and cooperate with the automated system (Yamani & Horrey, 

2018). For instance, Carsten, Lai, Barnard, Jamson, and Merat (2012) found that as higher levels 

of automation were used, participants became more likely to engage in a secondary task such as 

watching a DVD player. Engagement in a secondary task could lower the driver’s ability to 

acquire appropriate SA for the driving task and inhibit their ability to correctly respond to critical 

events (Merat et al., 2012). Alternatively, if the system is not performing to the human’s 

satisfaction, they may decide to allocate more attentional resources to monitoring the system or 

taking responsibilities back from the automation.  

In summary, as shown by the currently expanding market of ADAS, surface 

transportation is moving toward fully automated driving. Despite this trend, it is critical to 

understand whether higher automation levels are more beneficial in terms of safety and SA 

compared to manual driving. This study compared drivers’ responses in a manual driving mode 

and an automated driving mode when faced with a novel complex critical event (i.e., a potential 

cyber-attack).  

 Level of Automation and Situation Awareness  

The level of automation used has the potential to affect the driver’s ability to monitor for 

and appropriately respond to critical events as a result of differing levels of situation awareness 

(SA). Situation awareness refers to “a person’s perception of relevant information from their 

dynamic environment within a given time and space, the comprehension of its meaning, and 

projection of their status in the near future” (Endsley & Garland, 2000, p. 3). Despite the 



www.manaraa.com

 14 
 

intention of automation, many automated systems still require the human as a critical part of the 

system (SAE, 2018). In many automated systems, the human is required to monitor the system 

for failures and monitor the environment for scenarios that are outside of the automated systems 

capabilities (Endsley, 1996).  However, the introduction of automation can negatively impact the 

operator’s cognitive processes leading to inaccurate or slow responses to novel critical events 

(Endsley & Garland, 2000). Higher levels of automation have been found to lower the operator’s 

SA, and consequently, result in detriments to the operator’s potential response to novel critical 

events (Endsley & Garland, 2000). Despite this, in the context of surface transportation, higher 

levels of vehicle automation are often considered desirable. Highly automated driving systems 

may eventually lead to increased driving safety and reliability by reducing the demands on the 

driver. Relieving the user of the driving task, in turn, could lead to higher levels of comfort for 

the driver (Endsley & Garland, 2000; Gold et al., 2013). 

A central issue stemming from the use of automation in human-machine systems is the 

human-out-of-the-loop performance problem (Endsley, 1996; Kessel & Wickens, 1982). When 

humans are monitoring automation, they are often found to be slower at detecting issues that 

require them to intervene in the system potentially due to lower SA levels (Kaber & Endsley, 

2004). Additionally, once the issue is detected, extra time is needed for the humans to become 

situationally aware enough to determine the state of the human-machine system and decide the 

appropriate response (Endsley, 1996). The level of control that the human has over the human-

machine system could dictate the way the human responds to incidents that occur during the use 

of the system (de Winter, Happee, Martens, & Stanton, 2014). For instance, if the human is not 

at all engaged in controlling the system, then they may be less engaged in and attentive to what 

the system is doing as a result of their attention being allocated elsewhere.  
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The increased use of assistance technologies with automation in driving, and the 

subsequent rise in level of automation in vehicles, could lead to the operator allocating their 

attention to other non-driving related tasks (Carsten et al., 2012). According to Endsley (1995), if 

fewer attentional resources are allocated to the driving task then the driver may not achieve 

higher levels of SA. The driver’s SA levels can be negatively impacted by automation which 

may lead to poor responses to novel critical events (Endsley & Garland, 2000). Until automation 

is completely self-sufficient, there will be instances where human input is required because the 

automation assistant is incapable of handling some aspect of the situation it is faced with. When 

a system inadequacy happens, input from the driver is often required and a takeover request is 

given to the driver. The amount of time that it takes for the driver to successfully resume control 

of the vehicle is thought to depend upon their SA and identifying information about their 

environment (Endsley, 1996). After the driver has gathered sufficient information about the 

current situation then they can decide how to resume control of the vehicle. This process is 

referred to as a takeover, and despite the positive aspects of automation in surface transportation, 

takeover and take-over requests take time for the driver to understand and respond to (Gold, 

Dambock, Lorenz, & Bengler, 2013). 

The system’s level of automation could affect the operator’s SA level and subsequently 

affect the operator’s performance. For example, Kaber and Endsley (2004) examined how levels 

of automation and adaptive automation characteristics affected the participant’s SA, 

performance, and workload in a non-driving related context. The researchers had the participants 

do a simulation and gauge monitoring task. The experiment found that the primary task 

performance (i.e. the gauge monitoring task performance) was more closely associated with SA 

than with mental workload. The authors found that level of automation was the strongest 
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predictor of primary task performance and the operator’s SA level (Kaber & Endsley, 2004). 

Furthermore, this change in SA due to change in level of automation is thought to result from 

three major mechanisms (Endsley & Kiris, 1995). The first mechanism is the change in vigilance 

and complacency that occurs when humans monitor automation. The second mechanism is the 

human’s assumed role change from active to passive in regard to vehicle control. The last 

mechanism is the change in quality or form of the feedback provided to the operator. To examine 

the effect of automation implementation on human performance, Wickens and Kessel (1979, 

1981) performed experiments that demonstrated longer recovery times and poorer response 

accuracy for operators who had automation controlling the primary task before the critical event 

occurred. These studies showed the deficit in SA and subsequent responses caused by the 

implementation of automation in the primary task. For tasks such as driving, the negative effects 

automation has on human responses to critical events could lead to increased accidents and less 

safe roads.  

The relationship between SA and level of automation is important to understanding 

responses to critical events occurring at different levels of automations in surface transportation. 

Parasuraman and Manzey’s (2010) model of SA posits that SA is often lost as a result of 

complacency potential and attention bias during the processing of information about their 

situation. Both complacency potential and attentional bias are influenced by the level of 

automation that is in use (Strand et al., 2014). Strand and colleagues (2014) found that 

participants in the semi-automated vehicle were less likely to fail to take over control of the 

vehicle in time to prevent an accident when compared to the highly automated condition. This 

finding suggests that higher levels of automation can lead to degraded performance in the driving 

task potentially due to lower SA at higher levels of automation. Humans are poor monitors of 
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automation and this could lead to a variety of safety and efficiency problem in the surface 

transportation domain as the field moves toward higher levels of automation (Strand et al., 

2014).  The driver’s ability to respond to a critical event such as an automation failure is 

dependent on their level of SA at the time of the event and is important to ensure the safety of 

those in or around the vehicle. A driver’s failure to notice and respond to the automation failure 

as a result of being “out-of-the-loop” at higher levels of automation, could lead to accidents and 

lower vehicle safety.  

To gather a deeper understanding of how level of automation empirically affects human 

responses as a result of lowered SA, comparisons at different levels of automation need to be 

performed. Whereas Strand and colleagues (2014) compared semi-automated and highly 

automated driving, other research compared manual driving to driving with automation 

controlling the vehicle. As an example, Shen and Neyens (2017) compared conditional 

automated driving, with lane keeping and adaptive cruise control (conditional automated 

driving), to manual driving. The authors found that participants in the manual driving group 

responded to the system failure (critical event) significantly faster than participants in the 

automated conditions when looking at reaction time to the critical event as the dependent 

variable. Shen and Neyens suggest that this difference is a result of lower SA as the driver is 

further out-of-the-loop in the automated driving group. These findings further suggest there is 

potential for higher levels of automation to prevent the human from quickly and correctly 

responding to system failures. The relationship between levels of automation and successful 

response to critical events is still unclear, but a stronger understanding could lead to safer 

transition of vehicle control in the future.  
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The negative effect of higher automation on SA is an area of continued interest because 

of the continued push towards full automation in the driving domain. In an attempt to understand 

the relationship, Gold and colleagues (2013) compared automated driving to manual driving and 

reported higher levels of SA for the manual driving group. The authors posit this increase in SA, 

due to manual driving, led to approximately half as long reaction times to the critical event than 

those in the automated condition. The researchers also found that when the driver had less time 

to respond to the event, as a result of lower SA, they were more likely to use the brake than to 

steer with the wheel in response to the event. The authors posit that the use of the brake in low 

SA scenarios was to give the participant more time to analyze their dynamic environment and 

come to an appropriate decision. Gold et al.’s study suggests that differences in reaction time and 

response method are the result of differing levels of SA due to the level of automation present 

(Gold et al., 2013). Further research into the effect of levels of automation on SA and 

subsequently on driving performance is needed. The current study attempted to further 

understand how higher levels of automation affect SA and responses to novel critical events. 

While some studies have found that higher levels of automation lead to lower levels of 

SA, other studies have found unclear results. For instance, Merat, Jamson, Lai, and Carsten 

(2012) examined whether the level of vehicle automation and the presence of a secondary task 

affected the participants driving performance level. The authors compared two levels of 

automation (manual and automated) and examined how the driver responded to either a critical 

incident (e.g., system failure) or no critical incident. The results indicated that the average 

driving speed was lower for automated driving portions of the experiment when compared to the 

manual driving portion. When a critical incident was present, average speeds were slower, and 

were not affected by the presence of a secondary task. Merat et al. found that drivers responded 
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to the “critical incident” the same regardless of driving method (manual vs. automated) when no 

secondary task was present. However, the worst driver performance was obtained when the 

participant was distracted by the secondary task in the automated driving mode. It follows that 

this is the result of their attention being allocated elsewhere when the automation system needed 

them to resume control. The results of Merat et al.’s research help to provide information about 

how the vehicle level of automation affects driver SA, performance, and response to critical 

events. Specifically, the results suggest that higher levels of vehicle automation may have 

negative implications for driving safety.   

Research in the driving domain that examined level of automation, SA, and driver’s 

responses to critical events suggests that higher automation levels may lead to lower SA and 

slower responses to critical events. Many of the experiments were conducted with repeated 

critical events such as a car stopping in front of the participants. Endsley and Garland (2000) 

suggested that automation could lead to slower responses to novel critical events. With 

possibility of vehicle hacking due to increased level of automation, hacking attempts can be the 

novel critical events that may solicit responses of human drivers that are distinct from the 

repeated critical events studied before. The current experiment explored the effect the 

relationship between automation level and SA has on human responses to novel hacking 

attempts.  

Level of Automation and Cyberattacks 

Autonomous and semi-autonomous vehicles, though helpful and potentially safer than 

human operated vehicles, have risks and concerns that need to be addressed. Research into the 

public concerns about driving with autonomous systems (Bazilinskyy, Kyriakidis, & de Winter, 

2015; Kyriakidis, Happee, & de Winter, 2015; Schoettle & Sivak, 2014) has provided 
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researchers with issues that need to be understood and accounted for as surface transportation 

continues to head towards higher levels of automation. One potential concern for the future of 

autonomous driving is the potential for vehicles with autonomous systems to be the subject of 

cyberattacks (Amoozadeh et al., 2015). A cyberattack implies deliberate actions “to alter, 

disrupt, deceive, degrade, or destroy adversary computer systems or networks or the information 

and (or) programs resident in or transiting these systems or networks” (National Research 

Council, 2009, p. 19).  

As vehicles and related technologies continue to advance toward higher levels of 

automation, they will become increasingly at risk for vehicle hacking (Amoozadeh et al., 2015). 

Many of the systems that help a vehicle at higher levels of automation rely heavily on onboard 

sensors and internet connectivity in order to make real time vehicle maneuvering decisions. The 

connectivity and reliance on technology makes automated vehicles more vulnerable to 

cyberattacks. Amoozadeh et al.’s simulation showed that insider cyberattacks caused significant 

instability in the vehicle’s automated systems. Specifically, Amoozadeh et al. examined ways the 

vehicle could defend itself. One tactic highlighted was downgrading to lower levels of automated 

control or to manual control when a cyberattack occurred. This tactic of downgrading to lower 

automation levels is limited by the level of automation the vehicle is at when the attack occurs. It 

is critical to design technology and automated systems to resist cyberattacks, but it is also 

important to investigate how human drivers respond to hacking attempts at different levels of 

automation. Further understanding of how levels of automation affect human’s responses will 

allow researchers to look at whether humans are capable of making the necessary decisions to 

prevent a cyberattack from negatively affecting the vehicle. 



www.manaraa.com

 21 
 

There have been multiple indicators of the increasing potential for vehicle hacking 

attempts and their potential negative effects on driver safety. A public service announcement by 

the Federal Bureau of Investigation (FBI) in 2016 presented a step by step “How To” on what to 

do if you suspect your vehicle is the victim of a cyberattack, further suggesting the greater 

prevalence this issue may take in the near future (Federal Bureau of Investigation, 2016). 

Additionally, multiple surveys have found that respondents are concerned about the hacking of 

autonomous vehicles (Bansal, Kockelman, & Singh, 2016; Casley, Jardim, & Quartulli, 2013; 

Menon, 2015; and Schoettle et al., 2014).  

In our prior study, 537 people recruited from Amazon Mechanical Turk (MTurk) were 

surveyed on their concerns with automated vehicle use and we found that less than 8% of the 

responses contained a hacking concern (McManus, Chen, & Mishler, 2018). The difference in 

responses shown in McManus et al. (2018) could be the result of the way the question was asked. 

The prior studies (Bazilinskyy et al., 2015; Kyriakidis et al., 2015) prompted the respondents 

about the possibility of autonomous vehicle hacking, whereas our pilot study used a free-

response question that did not explicitly mention hacking. This difference as a result of how the 

question is asked, suggests that when the user is prompted about vehicle hacking, they view it as 

a serious problem, but much of the general public is unaware of the potential for vehicle 

cyberattacks without being informed of it. Research that examines the effect of automation level 

on novel vehicle hacking responses may provide detailed information about the effect 

automation level has on driving related cognitive processes.   

While not directly related to vehicle hacking, cyber security research suggests that 

detecting a cyberattack is influenced by the amount of knowledge an individual has about cyber 

security threat detection. Ben-Asher and Gonzalez (2015) found that individuals with more 
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knowledge about cyber security threat detection were better at detecting malicious attacks. 

Unfortunately, few people are aware of the potential for automated vehicle hacking without first 

being informed of the risk (McManus et al., 2018). If the findings on cyber security are shown to 

be similar in relation to vehicle hacking, then it could make a compelling case for educating the 

public about the potential for vehicle hacking and its effect on the driver’s SA and responses. 

The information gained from research on the effect of levels of automation on SA during novel 

event responses could lead to the safer future implementation of automation in the surface 

transportation domain. The current experiment further explored the human aspect of vehicle 

hacking and will help to provide more insight into the understudied area of human responses to 

vehicle hacking at different levels of automation. 

Although little empirical research pertaining to driver/passenger hacking responses has 

been performed in the surface transportation domain, some research has been conducted in the 

field of aviation. The field of aviation was influential in the creation of human factors, and 

human factors principles and research are often used to make aviation safer. Many of the 

findings in the aviation domain are applicable to surface transportation. Defining the exact 

parameters of a given hacking attempt is impossible due to the infinite ways and situations the 

hack or cyberattack could occur. For this reason, and the recent introduction of vehicle hacking 

as an issue, few researchers have attempted to examine the effect of novel vehicle hacks on 

human response. Those that have looked at the effect of hacking attempts on human responses 

have implemented a specifically designed control hack to examine its effect on operator 

response. (For the sake of simplicity across related fields, vehicle hacking and cyberattacks will 

be used interchangeably.)  For example, Gontar and colleagues (2018) investigated the effect of 

cyberattacks on pilot performance. Half of the pilots in the experiment were exposed to a 
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cyberattack while the other half were not. Their results suggested that the cyberattack on the 

pilot’s navigational aid negatively affected the pilots’ mental workload, eye movements, and 

behavior. This was shown in self-report data from questionnaire responses and in the 

deterioration of the pilot’s instrument monitoring and overall performance.  

In an attempt to further examine the effect of cyberattacks on pilots, Gontar et al. (2018) 

manipulated whether the pilot was warned about the incoming cyberattack in the experiment 

with half of the participants receiving an ambiguous semantic warning from the air traffic control 

tower and the remaining half not receiving the warning. The ambiguity of the warning was used 

to determine if there was a difference in responses to the warning when it was followed by a 

cyberattack or not. Warning the pilots about the possible cyberattack reduced the behavior and 

performance deficits caused by the cyberattack and subsequently raised workload when the 

attack occurred. Providing a warning when no attack was implemented resulted in higher 

workload and behavior deficits similar to when the attack was actually implemented. This 

suggests that warnings that precede an attack are helpful for mitigating the negative effects of the 

attack, but false alarm warnings have negative effects on pilot performance.  

The current study, similar to the Gontar et al. study, focused on how humans responded 

to cyberattacks as well as whether warnings mitigated some of the negative effects of 

cyberattacks. The current study expected to find similar benefits of warning implementation due 

to an increase in SA on novel critical event response due to hacking attempts in the surface 

transportation domain. 

In summary, the overall amount of responses that express concern about vehicle hacking 

found in McManus et al., (2018) suggests that the public believes vehicle hacking is a real issue 

and is concerned about its potential. Hacking related research in aviation that shows the negative 
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effect of hacking attempts on human operators, is at least of equal concern in the increasingly 

automated surface transportation domain. With this in mind, researchers need to empirically 

examine the way people respond in the event of a vehicle hacking attempt and how responses are 

affected by the vehicle automation level.  

Semantic Versus Non-Semantic Warnings in Surface Transportation 

The predicted increase in vehicle hacking attempts is one of many issues that warnings 

could be used to remedy. It is essential that warnings used in vehicles reflect the urgency of the 

situation at hand and are representative of what they warn the user of (Politis, Brewster, & 

Pollick, 2015). Auditory warnings are beneficial in the surface transportation context because 

they are capable of attracting the driver’s attention during visually demanding tasks like driving 

(Baldwin, 2011; Petermeijer et al., 2017). Moreover, speech-based warnings are capable of 

expressing additional information due to the inclusion of their meaning in the warning itself, and 

some messages convey more urgency than others based on the content of the warning (Hellier et 

al., 2002).  

Warnings with speech include semantic information that has the added benefit of 

informing the driver about the hazard in addition to alerting them of the presence of the hazard. 

The additional information provided by warnings including speech is of extra benefit to the 

driver when the driver must perform a crash avoidance maneuver (Chang et al., 2008). The extra 

information included in semantic warnings could potentially boost the user’s SA at the time of 

the warning when compared to warnings that do not contain clear semantic information. The use 

of auditory warnings to warn the driver of incoming vehicle hacking attempts could help to 

improve human responses to vehicle hacking attempts. In order to use them in future vehicles, a 
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further understanding of how the semantic information in warnings affects the driver’s SA is 

needed.   

Acoustic and semantic aspects of auditory warnings have been shown to affect each other 

when used for collision avoidance (Baldwin & Moore, 2002; Baldwin & May, 2005). When 

comparing speech words such as “danger, caution, and warning”, Bansal and May (2005) found 

that the word “danger” received a higher hazard rating than “caution” and “warning”. The higher 

hazard rating for danger has been replicated by other research (Politis et al., 2015). According to 

Horswill and McKenna (2004), hazard perception can be considered SA for dangerous situations 

in the driving environment. A novel vehicle hacking attempt while driving or monitoring 

automated driving could serve as a dangerous situation in the driving environment. Politis et al. 

(2015) found that non-semantic (tone-based) auditory cues had faster recognition times in low 

criticality situations but that tone-based and speech-based cues have similar response times in 

response to critical events. In the same study, the authors suggested the use of speech-based 

warning due to a marginal increase in driving performance when speech-based warnings were 

implemented. These findings suggest that the semantic content of a warning may affect the 

driver’s ability to respond and the effect of the semantic information may depend on the 

criticality of the situation.   

The semantic information contained in a warning has been shown to dictate aspects of 

human response and lead to different levels of reported urgency and pleasantness. For example, 

McKeown and Isherwood (2007) found that non-semantic, tone-based sounds had the longest 

response times and lowest accuracy whereas speech and auditory icons had the lowest response 

times and highest accuracy. Additionally, in the same study, the participants reported speech 

warnings to be more pleasant and less urgent than non-semantic sounds. When comparing speech 
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based and non-speech based auditory warnings, Edworthy and colleagues (2000) found no 

difference in perceived urgency of the warnings. Politis et al. (2015) claim that other than the 

Edworthy et al.’s study no other study had compared these two warning types with regards to 

urgency. Politis and colleagues compared language-based warnings with between three and six 

words to tone-based warnings at three different levels of urgency. They found no significant 

differences between the two warning types in number of mistakes made in response to the 

warnings, recognition time, or response time. Politis et al. posit that the lack of a difference in 

responses suggests language-based warnings perform just as well as tone-based warnings, which 

leads to a potential advantage for language-based warnings due to their higher pleasantry ratings 

and additional semantic content. 

Past research has examined critical events that are often repeated and common such as 

braking in response to a vehicle. The similarity between semantic and non-semantic warnings 

may not be found when a novel critical event occurs because of the increased need for additional 

SA for unfamiliar situations. The addition of extra information in a semantic warning may 

increase SA for the driver enough to affect the quality of their response to a hacking attempt. The 

current study aimed to expand on the Politis et al.’s (2015) findings by comparing warnings with 

semantic information (e.g. Semantic, Verbal warnings) to warnings without semantic 

information (e.g. Non-Semantic, Tone-Based warnings) to examine if semantic information 

affected driver SA and responses to novel vehicle hacking attempts. The current study hoped to 

make this comparison and provide further information about the effect of semantic information 

in warnings on driver SA.  
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Current Study 

Little empirical research on automated vehicle hacking has been done and research on 

how individuals respond to automation hacking in general is very limited (McManus et al., 

2018). To bridge this gap in the literature, research on driver reactions to vehicle hacking at 

different levels of automation is essential. The current study compared human reactions to a 

vehicle hacking incident when the vehicle was operating at between Level 2 and Level 3 (SAE, 

2018) automation (Automated Condition) to traditional manual driving (Manual Condition) 

using a driving simulator. To develop strategies to prevent the negative effects of automated 

vehicle hacking, there is a need to investigate how humans interact with the vehicle in the event 

of a hacking attempt. The present research examined how humans responded to a simulated 

aggressive vehicle hacking attempt.  

A between-subject design was used to examine the effect of level of automation 

(Automated vs. Manual) and auditory warning type (Semantic vs. Non-Semantic) on how the 

drivers responded to the vehicle hacking attempt. The hacking attempt, in this experiment, was a 

loss of vehicle control as it drives off the road towards vehicles and buildings. This loss of 

control due to the simulated hacking attack was preceded by an auditory warning dependent 

upon which warning condition the participant was assigned to.  

  Hypothesis 1: Participants in the manual driving group were expected to have higher 

TTC values than the participants in the automated driving group. The rationale for this 

hypothesis was that participants in the manual condition were expected to have higher SA for the 

primary task (in this case, vehicle control) than those in the automated condition, leading to 

faster reaction times and subsequently higher TTC values, as found in past studies (Gold et al., 
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2013; Kaber & Endsley, 2007; Kessel & Wickens, 1979, 1981: Parasuraman & Manzey, 2010; 

Shen et al., 2017; Strand et al., 2014).  

Hypothesis 2: Participants in the manual driving group were expected to have more 

successful responses than the participants in the automated driving group. This expectation was 

consistent with Hypothesis 1, wherein participants in the manual group were expected to have 

faster reaction times than those in the automated groups as a result of higher SA levels. Faster 

reaction times were expected to translate to more successful responses in the manual condition in 

our experiment (Gold et al., 2013; Shen et al., 2017; Strand et al., 2014).  

Hypothesis 3: Participants in the manual driving group were expected to have different 

reaction methods (wheel turns, pedal presses, etc.) than the participants in the automated driving 

group. The elevated SA of manual drivers was expected to result in different responses to the 

critical event as found in past studies (Gold et al., 2013; Kaber & Endsley, 2007; Merat et al., 

2012). It was expected that more pedal responses may be found in the automated condition as 

they brake to give themselves more time to gather information about the situation and decide 

upon the correct method of response.  

Hypothesis 4: Participants in the semantic warning condition were expected to have 

larger TTC values than participants in the non-semantic warning condition. The semantic 

warning was expected to provide more information than the non-semantic tone-based warning 

and increase the driver’s SA more than the non-semantic tone-based warning (Chang et al., 2008; 

Hellier et al., 2002; McKeown & Isherwood, 2007), resulting in higher TTC values for the 

semantic warning condition.  

Hypothesis 5: There was expected to be an interaction between level of automation and 

warning type such that, in the manual driving group, the addition of the semantic warning would 
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have less of a positive effect on TTC values than in the automated driving group. The addition of 

semantic information from the semantic warning is unlikely to be as helpful to the operator when 

they are already at a higher level of SA in the manual condition. Adding semantic information to 

the warning is likely to be more helpful to participants in the automated driving group because it 

will boost their SA more than in the manual driving group (Chang et al., 2008; Hellier et al., 

2002; McKeown & Isherwood, 2007), leading to an interaction between level of automation and 

warning type.  
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CHAPTER II 

METHOD 

Participants and Recruitment 

All participants for this study were recruited using the Old Dominion University SONA 

participant recruitment system (https://odupsychology.sona-systems.com). All participants were 

granted SONA credits towards their course requirements in various psychology courses. A pilot 

study that contained 28 participants was performed to ensure that the experiment and data 

collection process were in order. Next, a total of 72 undergraduates between the ages of 18 

(required age for participation in the SONA participant recruitment system) and 25 participated 

in the experiment (for power analysis information please see Appendix A). The cutoff age of 25 

was chosen based on the findings of Wetton et al.’s (2010) study. Wetton and colleagues found 

significant differences in hazard perception ability between 18-25 and 26-45-year-old drivers. In 

order to avoid contaminating our sample with groups of different hazard perception abilities it 

was decided to focus on a convenience sample of college age students (18-25). The participants 

were tested in individual sessions on a driving simulator. Each session lasted approximately 50 

minutes. The experiment was approved by the Institutional Review Board at Old Dominion 

University.  

The final sample contained 72 participants that were randomly assigned to one of the four 

experimental conditions (18 per groups). All participants reported normal or corrected to normal 

vision and hearing according to the demographics survey given to all participants. The final 

sample population was majority female (N = 56; 77.8%). All participants were between the ages 

of 18-23 years old with an average age of 19.44 (SD = 1.55) years. The sample ethnicity was 

https://odupsychology.sona-systems.com/
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47.2% African/African American, 36.1% Caucasian, 8.3% More than one race, 5.6% Asian, and 

2.8% Other/Unknown.  

Of the 72 participants collected 65 (90.3%) reported a private vehicle as their primary 

mode of transportation, with the remaining seven (9.7%) reporting walking and cycling as their 

primary mode of transportation. The participants reported the average age when they received 

their first license as 16.63 years old (SD = 0.86). When asked whether they drove to school or 

not, 63 participants (87.5%) reported that they did drive to school whereas nine participants 

(12.5%) reported that they did not drive to school. When asked about their driving frequency 

over the last twelve months, 45 (62.5%) of the seventy-two participants reported driving every 

day, 19 (26.4%) reported driving often, six (8.3%) reported driving sometimes, and two (2.8%) 

reported driving rarely. The average amount of accidents in the last three years for the entire 

sample was 0.63 accidents (SD = .85). Overall, the sample contained participants who were 

familiar with driving and avoided accidents. The collected sample should serve as good basis for 

understanding how young drivers (18-25 years old) respond to a vehicle hacking attempt under 

different automation and warning conditions (Wetton et al., 2010). 

Stimuli and Apparatus 

The stimuli were presented to the participants using a dual monitor personal computer 

running the STISIM Drive 3 software (http://stisimdrive.com). The stimuli were presented to the 

participants using a 27-inch Dell P2717H LCD Monitor with 1920x1080 pixel resolution and an 

NVIDIA GeForce GTX 1080 graphic card. There were two monitors present. The additional 

monitor was used by the experimenter to control the programs and was not shown to the 

participants. Participant inputs were performed using a Logitech G29 driving wheel and pedals 

(See Appendix B). 

http://stisimdrive.com/
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Procedure 

Participants were seated in front of a computer monitor with a steering wheel and foot 

pedals for driving based responses to the program. They were first asked to sign the informed 

consent and fill out a basic demographics survey (see Appendix C). The participants were then 

seated so that they had access to the driving wheel and pedals. Participants performed a five-

minute driving simulator practice session that consisted of freely navigating through a city with 

no ambient traffic. This was done to allow the participants to familiarize themselves with the 

driving simulator and to make sure that simulator sickness was not an issue.  

The participants were then assigned to one of four groups. The level of automation 

(automated vs. manual) and warning type (semantic vs non-semantic) were randomly assigned to 

each participant, and they served as the experiment’s main independent variables. The groups 

included the following combinations of the IVs: Manual Driving and Semantic Warning, Manual 

Driving and Non-Semantic Warning, Automated Driving and Semantic Warning, and Automated 

Driving and Non-Semantic Warning. Participants were assigned to one of the four groups. 

The automated groups contained participants that were in the automated driving group 

(between SAE Levels 2 and 3). Participants in the automated groups were asked to actively 

watch as the automated vehicle system drove them to class and instructed to keep their hands on 

the simulator steering wheel and feet ready at the pedals. The drive to class lasted approximately 

20 minutes. This time was chosen based on the average commute time of 20 minutes for 

residence of Hampton Roads wherein our subjects reside (Old Dominion University Social 

Sciences Research Center, 2015). The manual groups contained participants in the manual 

driving group. Participants in the manual groups were asked to manually drive themselves in the 

same simulator set up and along the same route as the automated groups, to class/work. Both 
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groups were asked to monitor their vehicle to ensure that their vehicle followed the rules of the 

road including all speed limits and were monitored by the researchers to ensure compliance.  

 The semantic warning group received a semantic auditory warning that stated “Danger, 

hacking attempt incoming”. This warning lasted for two seconds and immediately preceded the 

hacking attempt. The non-semantic warning group received a 500 Hz tone that lasted for two 

seconds and immediately preceded the hacking attempt. Participants were instructed to respond 

to their respective warnings by safely taking control of the vehicle. 

In addition, participants in the manual condition were instructed to follow all posted 

speed limits and the rules of the road. Each participant was asked to participate in two drives. 

During the first drive no hacking incident occurred, and this served as a route and system 

familiarization drive. The second drive contained the vehicle hacking event approximately three 

quarters of the way through the route.  

For the second drive, the route began the same as in the first drive, but approximately 

three quarters of the way through the route a vehicle hacking attempt took place. The hacking 

attempt was preceded by the vehicle security system’s warning that was dependent upon which 

warning group the participant was assigned to. Upon the completion of the warning, the vehicle 

abruptly angled off the road toward a parked car and buildings on either the left or right side of 

the road. The hacking attempt lasted for five seconds, then the vehicle made contact with a 

parked car if no response was made. The five-second hacking duration was decided upon based 

on a meta-analysis done by Eriksson and Stanton (2017) wherein the results suggested that when 

no secondary task was present, it took participants approximately five seconds to take control of 

the vehicle from the automation. Upon contact with the parked car, the simulator simulated a 

crash and the simulation ended. When this occurred, it was recorded as a failed response. If the 
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driver reacted in time and responded, the type of response, and the TTC values were recorded. 

When participants responded in time to avoid a collision and resumed normal driving, it was 

recorded as a successful response. After completion of the driving portion of the experiment, the 

participants were asked additional questions about their driving experience (see Appendix D) and 

given a Participant Experiment Opinion Survey that contained questions about their 

understanding and interpretation of the experiment (see Appendix E). Next, credit was granted 

by the researcher and the participant was asked not to tell others about the experiment and 

allowed to leave.  

Dependent Measures 

The participant’s reactions to the hacking attempt provided information on how humans 

respond in the event of an aggressive vehicle hacking attempt. The current study specifically 

examined the methods with which the participants responded. The dependent variables that were 

collected are: Method of response (wheel turn vs pedal press), successful response, and TTC 

(Time to Collision).The participant’s responses to the hacking attempt and accompanied warning 

were scored as 1= a wheel turn only, 2= pedal press only, or 3= both wheel turn and pedal press. 

The type of response was scored by the researcher based on the first frame of response data for 

each participant where they responded with a wheel turn greater than two degrees or a change in 

pedal depression that causes a change in acceleration/deceleration of more than 1 m/s2 (Hergath 

et al.,2017; Merat et al., 2012; Petermeijer et al., 2017; Radlmayr et al.,2014) . . Method of 

response served as the first dependent variable that was examined. A succeed/fail criterion which 

was used to determine whether the takeover response was successful or not and was based upon 

whether the participant responded in time to avoid a collision and resume normal driving. 

Participants who responded to the hack and accompanied warning in time to avoid an accident 
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and resumed normal driving were scored as successful responses. Successful responses were 

denoted by a 0, and those who did not avoid an accident were scored as unsuccessful responses, 

denoted by a 1. This successful response variable was compared between the two different 

driving groups in order to see which level of automation resulted in the highest successful 

response rate and as a result avoided the accident most frequently. The number of successful 

responses served as the second dependent variable that was examined.  

The TTC information was measured as the time remaining until impact with the vehicle 

or building and the TTC measurement was started after the vehicle hacking attempt warning tone 

was completed. As such, it provides information about how quickly the driver was able to 

respond to the cyberattack. Higher TTC’s are preferable in our study as high TTC’s indicate 

more time remaining before the accident occurs. The entire time from the warning to collision 

was approximately seven seconds. Time to collision data was compared between the four groups. 

TTC served as the third dependent variable that was examined, but TTC was only collected for 

the participants who responded before a collision occurred. This was done to ensure that zero 

TTC scores of those who failed to respond did not skew the TTC values that were examined and 

compared between groups. The information gleaned from these dependent measures may be 

helpful in the future development of safety systems in the surface transportation domain. 

Empirically comparing manual and automated driving and semantic and non-semantic warnings 

will allow future researchers and designers to optimize the driver vehicle relationship.  

CHAPTER III 

RESULTS 

 Missing data/outliers. Prior to analyses, the collected data were cleaned (i.e., missing 

data, outliers) and statistical assumptions for ANOVA were addressed. For the continuous 
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variable TTC, there were two TTC data points collected that were more than three standard 

deviations outside the mean TTC value. Winsorizing data takes significant outliers that otherwise 

would not be able to be used as data points and converts them to the score of next lowest TTC 

value that is not a significant outlier. This method allowed for the inclusion of data that 

otherwise would have to be omitted and allowed the researcher to maintain an equal number of 

participants in each experimental group.  The two significant TTC outliers (2.619 seconds, 2.629 

seconds) were Winsorized to the next lowest TTC score (4.579 seconds) from the dataset (Ghosh 

& Vogt, 2012).  The descriptive statistics, chi-squared distributions, assumption analyses, and 

ANOVA’s were conducted using IBM SPSS Statistics version 25. 

The dependent variable (DV) TTC is continuous, and reaction type and successful 

response rate are categorical. To test hypotheses pertaining to continuous dependent variables 

(Hypotheses 1, 4, & 5) a 2x2 factorial ANOVA was conducted to determine mean differences on 

each outcome measure (i.e., TTC values) between the different groups. To test hypotheses 2 and 

3, the categorical hypotheses, chi-squared tests were performed to examine the differences in 

successful responses and reaction methods between manual and automated driving groups.  

ANOVA assumptions. The assumptions of ANOVA are the following: normality, 

independence of observations, and homogeneity of variance.  To test the assumption of 

normality, histograms and Q-Q plots were used to examine skewness and kurtosis. When testing 

the normality assumption for the TTC scores (Hypotheses 1, 4, and 5), the Winsorized TTC data 

was used. When checking for normality of the Winsorized TTC data, the data were normally 

distributed as shown by a skewness and kurtosis values of -.051 and -1.240 respectively which 

fall between the cutoff values of -1.96 and 1.96 which represent the 95% confidence interval of a 

standard normal z distribution (Gravetter & Wallnau, 2005). The assumption for independence of 
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observations was addressed using participant randomization to study conditions (manual or 

automated driving, non-semantic or semantic warning). Each group consisted of different 

individuals who were not measured twice or specifically matched in any way. The assumption of 

homogeneity of variance was checked to ensure the variance of data in each condition was the 

same using a Levene’s test. The results of the Levene’s test on the Winsorized TTC was not 

significant with F (3,68) = 0.11, p = .953, and as such the assumption of homogeneity of 

variance was met. 

ANOVA results. To test Hypotheses 1, 4, and 5, Winsorized TTC was examined across 

level of automation condition (Manual or Automated) and across warning condition (Non-

Semantic or Semantic) using a 2x2 factorial ANOVA. It was found that there was no significant 

effect of level of automation on TTC with F(3, 68) = 0.18, p = .673, ηp
2 = .00. The mean TTC 

value for the manual driving group (M = 4.63, SD = .03) was not significantly different from the 

average TTC value for the automated driving group (M = 4.63, SD = .03). Based on the results of 

the statistical analysis the researcher was unable to provide support for Hypothesis 1. It was also 

found that there was no significant effect of warning condition on TTC with F(3, 68) = 1.20, p = 

.278, ηp
2 = .02. The average TTC value for the Non-Semantic warning condition (M = 4.63, SD = 

.03) was not significantly different from the average TTC value for the Semantic warning (M = 

4.62, SD = .03). Based on the results of the statistical analysis our data were unable to provide 

support for Hypothesis 4. Lastly the interaction between and warning condition was not 

significant with F(3, 68) = 0.57, p =.455, ηp
2 = .01. Based on the result of the statistical analysis 

the researcher was unable to provide support for the interaction predicted in Hypothesis 5.  

Hypothesized chi-squared results. In order to test Hypothesis 2, the hypothesis that 

pertained to successful responses a chi-squared analysis was performed. Three of the seventy-
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two participants successfully avoided crashing into a car or building and were able to regain 

control of the vehicle to safely resume normal driving. Two of the successful responses occurred 

for participants in the automated semantic condition and the other successful response occurred 

in the automated non-semantic condition. These results suggest that the vehicle hacking attempt 

used in the current study may have been too difficult for the participants to safely respond. The 

results indicate that level of automation does not have a significant effect on successful 

responses, χ2(1) =1.06, p = .303, not supporting Hypothesis 2.  

In order to test Hypothesis 3, a chi-squared analysis was performed. Sixty-four of the 

seventy-two participants responded with only a wheel turn as there first recorded response to the 

hacking attempt and accompanied warning (scored as a 1). The remaining eight responses were 

wheel turns and pedal presses (scored as a 3). The results of the chi-squared analysis showed that 

there was no significant effect of level of automation on response type, χ2(1) = .00, p = 1.00. The 

result of the chi-squared analysis fails to provide support for Hypothesis 3.  

Qualitative survey response results. A post-experiment survey was given to all 

participants in an attempt to gain insight into their understanding and opinions about automated 

vehicles and the current experiment. For the first question of the post experiment survey, the 

participants were given one of following statements, “I was engaged in driving the vehicle for the 

entire ride” (Manual) or “I was engaged in monitoring the automated driving system for the 

entire ride” (Automated),  and asked to rate their level of agreement with the statement on a five-

point Likert scale from strongly disagree (1) to strongly agree (5). A 2x2 ANOVA was used to 

determine if there was a difference in reported engagement due to level of automation or warning 

type. There was no significant difference in reported engagements due to level of automation, 

F(3, 68) = 1.84, p =.180, ηp
2 = .03.  There was no significant difference in reported engagements 



www.manaraa.com

 39 
 

due to warning condition, F(3, 68) = 0.14, p =.713, ηp
2 = .00. There was no significant 

interaction between level of automation and warning condition for reported engagement as 

shown by F(3, 68) = 0.74, p =.391, ηp
2 = .01.   
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Figure 1. Reported engagement during drive (error bars represent 1 standard error of the mean). 
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Participants were also asked whether they noticed a warning during the drive. Chi-

squared analyses were used to determine if there was a statistical difference in the number of 

participants that reported noticing a warning due to level of automation and warning condition. 

For level of automation there was not a significantly different number of participants that 

reported noticing the warning, χ2(1) = 2.49, p = .114. However, for warning condition, there was 

a statistically different number of participants that reported noticing the warning, χ2(1) = 9.97, p 

= .002.  

 The counts in Table 1 show that participants that received a semantic warning reported 

that they noticed a warning (Manual Semantic had only 3 no responses, Automated Semantic had 

only 1 no response) more than participants who received a non-semantic warning (Manual Non-

Semantic had 10 no responses, Automated Non-Semantic had 6 no responses). This suggests that 

non-semantic warnings were more frequently not noticed as a warning compared to semantic 

warnings.  Additionally, non-semantic warnings resulted in less reports of noticing the warnings 

(Manual Non-Semantic had 8 yes responses, Automated Non-Semantic had 12 yes responses) 

than participants who received semantic warnings (Manual Semantic had 15 yes responses, 

Automated Semantic had 17 yes responses). This suggests that participants who received a 

semantic warning more frequently reported noticing the warning as a warning than non-semantic 

warning recipients based on the counts.  

Participants in the manual driving group reported not noticing the warning (Manual Non-

Semantic had 10 participants, Manual Semantic had 3 participants) more frequently than the 

participants in the automated driving group (Automated Non-Semantic had 6 participants, 

Automated Semantic had 1 participant). Participants in the manual driving group reported 

noticing the warning (Manual Non-Semantic had 8 participants, Manual Semantic had 15 
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participants) less frequently than the participants in the automated driving group (Automated 

Non-Semantic had 12 participants, Automated Semantic had 17 participants).   
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Table 1  

Count of Whether Participants Noticed Warning or Not 

 Noticed Warning? 

Group No Yes 

Manual Non-Semantic 10 8 

Manual Semantic 3 15 

Automated Non-Semantic 6 12 

Automated Semantic 1 17 

Total 20 52 
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The participants in both level of automation conditions and warning conditions that 

reported noticing the warning were then asked, “What did the warning you received represent?” 

with four response options (A system malfunction, an automation failure, a vehicle hacking 

attempt, or other). The participants’ responses to the question were broken down by level of 

automation (Manual or Automated) and the warning type they received (Semantic or Non-

Semantic). A chi-squared analysis was used to determine if the perceived representation of the 

warning was significantly different across the four experimental groups (Manual Non-semantic, 

Manual Semantic, Automated Non-semantic, and Automated Semantic). The four groups did not 

have significantly different perceived representations of the warning, χ2(3) = 6.09, p = .107 (See 

Table 2).  
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Table 2  

Perceived Warning Meaning Counts  

 Perceived Warning Meaning 

Group 

Vehicle 

Hacking 

Attempt 

System 

Malfunction 
Other 

Automation 

Failure 

Manual Non-Semantic 1 4 2 1 

Manual Semantic 10 4 0 1 

Automated Non-Semantic 0 2 1 9 

Automated Semantic 8 6 1 2 

Total 19 16 4 13 
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In addition, chi-squared analyses were used to determine if the perceived representation 

of the warning was significantly different based upon level of automation and warning type when 

the responses were scored as a vehicle hacking attempt or as not a vehicle hacking attempt. For 

level of automation there were not significantly different perceived representations of the 

warning, χ2(1) = 2.99, p = .224. However, for warning condition, there were significantly 

different perceived representation of the warning, χ2(1) = 19.17, p < .001. For specific counts of 

the perceived representations see Table 3 below. These findings suggest that level of automation 

did not significantly affect the perceived representation of the warning as a hack or not, but the 

warning type did.  
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Table 3  

Perceived Warning Meaning Counts: Hacking Attempt vs. Not a Hacking Attempt 

                                        Perceived Warning Meaning 

Group 

Vehicle 

Hacking 

Attempt 

Not a Vehicle 

Hacking 

Attempt 

Manual Non-Semantic 1 7 

Manual Semantic 10 5 

Automated Non-Semantic 0 12 

Automated Semantic 8 9 

Total 19 33 
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Participants that reported noticing the warning were also given the statement, “I 

perceived the warning I received to be urgent” and asked to rate their level of agreement with the 

statement on a five-point Likert scale from strongly disagree (1) to strongly agree (5). A 2x2 

ANOVA was used to determine if there was a difference in reported urgency due to level of 

automation or warning condition. There was no significant difference in reported urgency due to 

level of automation shown by F(3, 68) = 2.25, p =.140, ηp
2 = .05. There was a significant effect 

difference in reported urgency due to warning condition shown by F(3, 68) = 4.43, p =.041, ηp
2 = 

.08. There was also a significant interaction between level of automation and warning type for 

reported urgency shown by F(3, 68) = 5.21, p =.027, ηp
2 = .10. These findings suggest that non-

semantic warnings are perceived as less urgent than semantic warnings but only in the manual 

driving condition.  
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Figure 2. Reported perceived urgency of warning (error bars represent 1 standard error of the 

mean).  
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All participants in the study were asked “Were you aware of the potential for vehicle 

hacking before this experiment?”. Chi-squared analyses were used to determine if the number of 

participants with previous knowledge of vehicle hacking was significantly different due to level 

of automation or warning condition. For level of automation there was a significantly different 

number of participants with previous knowledge of vehicle hacking, χ2(1) = 12.77, p < .001. 

However, for warning condition there was not a significantly different number of participants 

with previous knowledge of vehicle hacking, χ2(1) = 0.36, p = .551. For specific counts of 

participants with previous hacking knowledge see Table 4 below. These findings suggest that 

there was a significant difference in the number of participants with previous knowledge of 

vehicle hacking attempts when examined based upon level of automation but not when examined 

based upon warning condition.  
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Table 4  

Count of Participants Who Reported Previous Knowledge of Vehicle Hacking  

 Previous Knowledge of Vehicle 

Hacking Potential? 

Group No Yes 

Manual Non-Semantic 17 1 

Manual Semantic 18 0 

Automated Non-Semantic 13 5 

Automated Semantic 10 8 

Total 58 14 
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CHAPTER IV 

EXPLORATORY RESULTS 

The researcher performed several exploratory analyses that were not included in the 

proposed analyses to gain further insight into the effects of level of automation and warning 

condition on participants response quality. These measures of response quality included 

maximum steering wheel angle, maximum steering wheel angle over time, and maximum 

resulting acceleration. The measures of response quality used in the current study were included 

in order to gain more specific additional information about the participants responses to the 

vehicle hacking attempt. More detailed analysis of the quality of the responses may provide 

additional information about the hacking attempt responses above that provided by the 

hypothesized analysis. 

Maximum steering wheel angle. The first exploratory analysis preformed pertained to 

maximum steering wheel angle which is measured in degrees. Maximum steering wheel angle 

was calculated by taking the difference of the angles of participant’s initial wheel turn response 

greater than two degrees and the participant’s largest (most severe) wheel turn across the 

duration of the hacking attempt (Shen & Neyens, 2017). Two degrees was used as the wheel 

response cutoff due to its use in the literature as the smallest number of degrees the steering 

wheel is required to move to count as a wheel response (Merat et al., 2012; Petermeijer et al., 

2017; Radlmayr et al., 2014). Maximum steering wheel angle is an indication of response quality 

such that larger maximum steering wheel angle values are considered less safe.  

Maximum steering wheel angle was analyzed using a 2x2 factorial ANOVA to determine 

if level of automation (Manual or Automated) or warning type (Semantic or Non-Semantic) had 

an effect on the participants maximum steering wheel angle. Before the ANOVA was conducted, 
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the assumptions of normality, independence of observations, and homogeneity of variance were 

addressed for maximum steering wheel angle and the data was checked for significant outliers. 

There were no significant outliers and the skewness and kurtosis values of .94 and -.51 

respectively suggest the data is sufficiently normal because they fall between the cutoff values of 

-1.96 and 1.96 which represent the 95% confidence interval of a standard normal z distribution 

(Gravetter & Wallnau, 2005). The assumption for independence of observations was addressed 

using participant randomization to study conditions (manual or automated driving, non-semantic 

or semantic warning). The assumption of homogeneity of variance was checked to ensure the 

variance of data in each condition was the same using a Levene’s test. The results of the 

Levene’s test on maximum steering wheel angle was significant with F(3, 68) = 3.77, p =.015, 

and as such the assumption of homogeneity of variance was not met. ANOVA is sensitive to 

violations of homogeneity of variance, but this sensitivity is mitigated due to the equal sample 

sizes for each level of each independent variable (Sawyer, 2009).  

There was a significant effect of level of automation on maximum steering wheel angle, 

F(3, 68) = 4.53, p = .037, ηp
2 = .06 (See Figure 3). The mean maximum steering wheel angle for 

participants in the Manual driving group was M = 505.12 (SD = 75.64) and the mean maximum 

steering wheel angle for participants in the Automated driving group was M = 548.45 (SD = 

97.25). There was an effect of warning condition was not significant, F(3, 68) = 3.19, p = .079, 

ηp
2 = .05 (See Figure 3). The mean maximum steering wheel angle for participants in the 

Semantic warning condition was M = 544.95 (SD = 91.41) and the mean maximum steering 

wheel angle for participants in the Non-Semantic condition was M = 508.61 (SD = 84.34). There 

was not a significant interaction between level of automation condition and warning condition 

for maximum steering wheel angle, F(3, 68) = .026, p = .873, ηp
2 = .00.  
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Figure 3. Maximum steering wheel angle (error bars represent 1 standard error of the mean).  
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Maximum steering wheel angle over time. In addition to maximum steering wheel 

angle, maximum steering wheel angle over time was calculated and is a unique use of the 

previously used maximum steering wheel angle dependent variable that was created to further 

analyze the results of the experiment. Maximum steering wheel angle over time was calculated 

by taking the calculated maximum steering wheel angle and dividing it by the time between the 

initial and largest reaction. Maximum steering wheel angle over time allowed researchers to 

quantify how quickly the participant turned the wheel from their initial response to their most 

severe response. Maximum steering wheel angle over time is a measure of response quality such 

that larger values are more dangerous responses based on how quickly the user turned the wheel 

from their initial turn to their most severe turn.   

Maximum steering wheel angle over time was analyzed using a 2x2 factorial ANOVA to 

determine if level of automation (Manual or Automated) or warning type (Semantic or Non-

Semantic) had an effect on the participants maximum steering wheel angle over time. Before the 

ANOVA was conducted the assumptions of normality, independence of observations, and 

homogeneity of variance were addressed for maximum steering wheel angle over time and the 

data was checked for significant outliers. There were no significant outliers and the skewness 

and kurtosis values of 1.29 and -.08 respectively suggest the data is sufficiently normal because 

they fall between the cutoff values of -1.96 and 1.96 which represent the 95% confidence 

interval of a standard normal z distribution (Gravetter & Wallnau, 2005).  The assumption for 

independence of observations was addressed using participant randomization to study conditions 

(manual or automated driving, non-semantic or semantic warning). The assumption of 

homogeneity of variance was checked to ensure the variance of data in each condition was the 

same using a Levene’s test. The results of the Levene’s test on maximum steering wheel angle 
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over time was significant with F (3,68) = 2.97, p = .04, and as such the assumption of 

homogeneity of variance was not met. The violation of ANOVA’s assumption of homogeneity of 

variance is mitigated due to the equal sample sizes for each level of each independent variable 

(Sawyer, 2009). 

There was not a significant effect of level of automation on maximum steering wheel 

angle over time with F (3,68) =.65, p = .424, ηp
2 = .01. The mean maximum steering wheel angle 

over time for participants in the Manual driving group was M = 202.19 (SD = 103.43) and the 

mean maximum steering wheel angle over time for participants in the Automated driving group 

was M = 221.66 (SD = 102.43). There was no significant effect of warning condition on 

maximum steering wheel angle over time with F (3,68) = 1.41, p = .240, ηp
2 = .02. The mean 

maximum steering wheel angle over time for participants in the Semantic warning condition was 

M = 197.59 (SD = 86.32) and the mean maximum steering wheel angle over time for participants 

in the Non-Semantic condition was M = 226.27 (SD = 116.24). There was not a significant 

interaction between level of automation condition and warning condition for maximum steering 

wheel angle over time with F (3,68) = 1.04, p = .312, ηp
2 = .02.  

Maximum resulting acceleration. An additional measure of response quality was also 

collected. Maximum resulting acceleration is calculated by taking the square root of the sum of 

the squared values of the vehicles longitudinal and lateral accelerations and is presented in m/s2 

(Gold et al., 2013; Hergeth, Lorenz, & Krems, 2017). If maximum resulting accelerations are 

high and approach the physical limits of the vehicle and the vehicle’s tires, the vehicle may 

become unstable. Thus, lower maximum resulting accelerations are safer and considered better 

quality responses.  
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Before the maximum resulting acceleration data was analyzed across driving and warning 

conditions the assumptions of ANOVA were checked. There were ten significant outliers in the 

maximum resulting acceleration data. The skewness and kurtosis values of 1.46 and .39 

respectively suggest the data is sufficiently normal because they fall between the cutoff values of 

-1.96 and 1.96 which represent the 95% confidence interval of a standard normal z distribution 

(Gravetter & Wallnau, 2005). The assumption for independence of observations was addressed 

using participant randomization to study conditions (manual or automated driving, non-semantic 

or semantic warning). The assumption of homogeneity of variance was checked to ensure the 

variance of data in each condition was the same using a Levene’s test. The results of the 

Levene’s test on maximum resulting acceleration was not significant with F (3,68) = 2.30, p = 

.085 and as such the assumption of homogeneity of variance was met. 

 A 2*2 factorial ANOVA was performed to determine if level of automation (Manual or 

Automated) or warning type (Semantic or Non-Semantic) had an effect on the participants 

maximum resulting acceleration values. There was not a significant effect of level of automation 

on maximum resulting acceleration with F (3,68) = .53, p =.469, ηp
2 = .01. The mean maximum 

resulting acceleration value for participants in the Manual driving group was M = 24.71 (SD = 

2.53) and the mean maximum steering wheel angle over time for participants in the Automated 

driving group was M = 25.19 (SD = 3.03). There was no significant effect of warning condition 

on maximum resulting acceleration with F (3,68) = 1.48, p = .229, ηp
2 = .02. The mean maximum 

resulting acceleration value for participants in the Semantic warning condition was M = 25.35 

(SD = 2.95) and the mean maximum resulting acceleration value for participants in the Non-

Semantic condition was M = 24.55 (SD = 2.58). There was not a significant interaction between 
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level of automation condition and warning condition for maximum resulting acceleration with F 

(3,68) = .008, p = .929, ηp
2 = .00.  
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CHAPTER IV 

DISCUSSION 

The primary objective of this study was to determine if the level of automation used to 

control the vehicle and the type of auditory warning, affected the driver’s response to novel 

critical events. This was accomplished by comparing manual driving and automated driving and 

providing either a semantic or non-semantic warning to the driver before the onset of the vehicle 

hacking attempt that served as the novel critical event. The driver’s TTC, response method, the 

amount of successful responses, and three measures of response quality were analyzed based 

upon the level of automation and warning type that the driver was randomly assigned. The 

results of the experiment suggest that level of automation may not affect how quickly people 

respond to vehicle hacking attempts when the hacking attempt is preceded by an auditory 

warning. In addition, the way participants responded to the hacking attempt and the amount of 

successful responses to the hack, were very similar regardless of level of automation or warning 

type. However, exploratory analyses provided some evidence that manual driving may lead to 

safer responses to critical events as shown by the lower maximum steering wheel angles in the 

manual driving condition. Additionally, exploratory analyses suggested that semantic warnings 

are more often interpreted correctly overall and semantic warnings lead to higher reported 

urgency, specifically when manually driving the vehicle.  

Level of Automation: TTC  

 The first major manipulation used in the current study was the level of automation used 

to control the vehicle. The current study hypothesized that level of automation would affect 

participants TTC values such that participants in the manual driving condition would have higher 

TTC values than participants in the automated driving condition (Hypothesis 1). The current 
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experiment did not find a significant effect of level of automation on TTC, and as such, support 

for Hypothesis 1 was not found. This finding is not consistent with previous research in the field.  

The null findings for TTC, while not hypothesized, do partially coincide with the findings 

of Merat et al. (2012) who also did not find a difference in how quickly participants responded 

based upon automation level when no secondary task was present. The presence of a secondary 

task has been shown to increase the SA deficit caused by the level of automation in the driving 

domain by further distracting the driver from the primary task. The current study also did not 

have a secondary task which may have been a reason why no TTC differences were found. When 

no secondary task is present, it is possible that the level of SA is not sufficiently lowered in the 

automated driving group to lead to significant differences in their responses to the hacking 

attempt.  

Past research by Gold et al. (2013) and Shen and Neyens (2017) both examined the effect 

of manual and automated driving on participant responses to critical events similar to the current 

experiment. They both found significant advantages, in terms of reaction time, for the manual 

driving condition over the automated driving condition. In addition, when comparing semi-

automated and highly automated driving, Strand et al. (2014) found faster reactions times for 

participants in the semi automation condition than in the highly automated condition. The 

researchers explained the results of these past experiments by positing that the faster reaction 

times for drivers in the manual and lower automation conditions could be due to higher levels of 

SA compared to the automated driving conditions. 

For the current experiment, the TTC values were very similar for both levels of 

automation which does not support our hypothesis or match past findings in the literature. The 

lack of differences between the two levels of automation for TTC could suggest that there was 
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not a difference in level of SA between manual and automated driving like there was in the past 

studies by Gold et al. (2013), Strand et al. (2014), and Shen and Neyens (2017). This lack of a 

difference in TTC and potentially SA, could be due to the auditory warning that was presented to 

all participants before the hack began. By providing a warning beforehand, it is possible that 

participants in each group had the duration of the warning (2 seconds) to gain SA, and as such, 

members in both groups were prepared to respond to the critical event by the time it occurred. In 

addition, Gold et al. (2013), Strand et al. (2014), and Shen and Neyens (2017) used more 

traditional driving event scenarios such as braking for a vehicle in front or changing lanes to 

avoid an upcoming obstacle as their critical event. These methodologies are different than the 

complex and novel hacking scenario used in the current study.  

In summary, the novelty of the vehicle hacking attempt used in the current study may 

have led to the findings that are inconsistent with the results of Gold et al. (2013), Strand et al. 

(2014), and Shen and Neyens (2017). The current finding suggests that the level of automation 

present does not affect how quickly participants are able to respond to the critical event. This 

inconsistency could be due to the lack of a secondary task, resulting in less differences in SA in 

the current study, similar to Merat et al.’s. (2012) study. It could also be due to the addition of 

the warning before the critical event, which possibly eliminated the SA differences between the 

levels of automation. This may have led to a ceiling effect for TTC, such that all participants 

responded to the critical event very quickly, eliminating the potential differences between the 

driving groups. We did not find a significant difference between manual and automated driving 

for TTC which is contrary to the previous literature, potentially due to the warning 

implementation time and its effect on participants SA levels. Despite this, the benefit of 
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providing warnings before the actual critical event was highlighted as shown by the extremely 

high TTC values found across all experimental groups. 

 Level of Automation: Successful Responses 

The next goal of the study was to determine if the level of automation condition affected 

the participants ability to successfully respond to the hacking attempt and safely resume control 

of the vehicle. In order to examine this, the current study compared the amount of successful 

responses to the hacking attempt between the manual and automated driving groups. In the 

current experiment, participants in the manual driving group were expected to have more 

successful responses than participants in the automated driving condition. Only three of the 

seventy-two participants were able to successfully respond to the hacking attempt and all three 

were in the automated driving condition. The statistical analysis did not find a significant 

difference in successful responses between the two levels of automation. The current study did 

not find significantly different numbers of successful responses to the vehicle hacking attempt in 

the manual and automated driving conditions. Based on this finding, the current study did not 

find support for Hypothesis 2.  

Strand et al. (2014), in addition to other previous studies (Gold et al., 2013, & Shen and 

Neyens, 2017) suggested that participants in the manual and semi-automated driving groups 

would have more successful responses to the critical event than participants in the automated 

driving group. The past authors attributed the higher amount of safe responses to the critical 

event to higher levels of SA for those in semi-automated or manual driving. They suggested that 

higher SA levels for participants was crucial for adequate responses and that higher automation 

levels lead to participants that are more “out-of-the-loop”. These findings were not replicated in 
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the current experiment possibly due to the potential lack of differences in SA shown by the very 

similar TTC values for both level of automation conditions. 

The overall low successful response rate across all participants (3 successful attempts in 

72 critical events) suggests that the hacking scenario may have been too difficult for the 

participants to safely respond, due to its novel and complex nature. The past studies by Gold et 

al. (2013), Strand et al. (2014), and Shen and Neyens (2017) used simpler critical event scenarios 

such as a lane change due to a stalled vehicle which may contribute to their significant results. In 

contrast, they suggested the use of more complex and novel critical events for future research. 

The hacking scenario used in the current study included vehicles and buildings in a cityscape and 

the closeness of objects that needed to be avoided may have made the scenario too difficult for 

participants to avoid while also attempting to combat the effects of the hacking attempt. 

 In summary, there was no significant difference for successful responses between the 

two levels of automation which is not consistent with previous findings in the literature. This 

finding suggests that the level of automation present does not affect the participants likelihood of 

successfully responding to the critical event. Our null result is potentially due to the elevated 

difficulty and complexity of the scenario and the hacking attempt as shown by the very low 

number of successful responses as well as the elevated SA levels due to the early onset of the 

warning.  

Level of Automation: Response Method 

Next, we wanted to determine if the level of automation led to different response methods 

(wheel turns, pedal presses, etc.) to the vehicle hacking attempt critical event. We hypothesized 

that participants in the manual driving condition would have different response methods than the 

participants in the automated driving condition potentially due to a difference in SA between the 
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two groups. It was expected that more pedal press responses would be found in the automated 

condition as they brake to give themselves more time to gather information about the situation 

and decide upon the correct method of response. The current study did not find significant 

differences in respond method in the manual and automated driving conditions. Approximately 

89% of all responses to the vehicle hacking critical event were wheel turns and there were equal 

amounts of wheel turn and wheel turn/pedal press responses in the manual and automated driving 

groups. Based on these findings, we did not find support for Hypothesis 3. 

 Past research by Gold and colleagues (2013) found that participants in the automated 

driving group had slower reaction times due to lower levels of SA. Further, when the participants 

had less time to react to the critical event due to their lower SA levels the participants were more 

likely to use the brake than to use a wheel turn to steer the vehicle. Gold et al. posited that this 

tendency to brake rather than to steer as a first reaction was likely an attempt by the participants 

to give themselves more time to gather SA about the critical event and their surroundings before 

making the decision of how to appropriately respond. This explanation and accompanied results 

were not found in the current experiment, potentially due to a lack of differences in SA between 

the manual and automated driving conditions in the current study.  

There are a couple of potential reasons for the inconsistency with Gold and colleague’s 

study and the current experiment’s null result. Implementing the warning before the hacking 

attempt potentially led to higher levels of SA across both levels of automation and provided a 

window of time for the participant to attend to the vehicle and analyze the situation before the 

hacking attempt actually began. This could explain why the participants used a wheel turn as a 

first response rather than a brake press since they may not have needed to create additional extra 

time to analyze their situation. The potentially higher SA levels across both levels of automation 
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could also have led to the participants typically using a wheel turn as their response method to 

the hacking attempt.  

Another potential reason for the null result was the way the hacking attempt was 

implemented. The hacking attempt itself caused the vehicle to change direction and veer off the 

road. Had the hacking attempt required the vehicle to avoid an object directly in front of them it 

is possible they would have been more likely to use the brake as found in Gold et al.’s (2013) 

study. In essence, the way that the hack occurred, and its change of direction may have been the 

reason why the participant predominately used a wheel turn to combat the direction change 

rather than a brake press. 

 In sum, there was no significant difference in response method between the manual and 

automated driving groups. This result suggests that the level of automation present does not 

affect the way drivers respond to critical events. This result is not consistent with past findings or 

the theory of SA (Endsley, 1995). The lack of a difference between the two groups is potentially 

due to elevated SA levels for both groups due to the preemptive warning and the nature of the 

hacking attempt. Further research in needed into this domain as the complexity of the current 

experiment may have led to results that are not indicative of all driving situations.  

Warning Type  

In addition to level of automation, the current study also manipulated the content of the 

auditory warning that each participant received. The warnings contained either a tone or a 

semantic statement and we aimed to determine if the semantic content within a warning affected 

the participants responses to the vehicle hacking attempt. It was hypothesized that participants in 

the semantic warning condition would have higher TTC values than participants in the non-

semantic warning condition. This expectation was based upon the idea that warning type would 
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affect participant’s responses such that semantic warnings would elevate the participants SA by 

informing them of the cause of the warning resulting in better warning responses. The current 

study did not find significantly different TTC values between the semantic and non-semantic 

warning suggesting that the semantic warning did not provide additional benefit over the non-

semantic warnings. Based on this result, the current study was not able to support Hypothesis 4.  

Past research that examined whether the content of a warning affected responses 

produced results not replicated in the current study. For instance, Politis et al. (2015) found that 

when auditory warnings were used, language-based warning recipients had faster reaction times 

than abstract tone-based warning recipients. Also, Baldwin and May (2005) suggested that verbal 

auditory warnings have the potential to reduce crash risk during hazardous situations. Chang et 

al. (2008) also posited that warnings that included speech are beneficial to the driver when they 

need to avoid a crash. Chang and colleagues suggested that the extra information provided by the 

semantic warning over the non-semantic warning would lead to better SA for the driver. These 

findings and others, (Hellier et al., 2002; McKeown & Isherwood, 2007) were the basis for the 

current studies expectations of different TTC values between the groups due differences in SA 

provided by the warnings. However, the current study did not replicate the findings of these 

studies as shown by nearly identical TTC values for participants in both the semantic and non-

semantic warning conditions. 

The results found in the current study, that do not match these previous studies, are 

potentially the result of a few experimental design differences. Past research on auditory 

warnings has focused on after-the-fact reported urgency and pleasantness ratings, whereas the 

current study attempted to see if the warning type produced tangible differences in how drivers 

responded to a novel and complex driving event. This complicated and potentially less warning 
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centric design may have resulted in similar levels of SA for the drivers. It is possible that the null 

result of the current study is due to similarities between the warnings which were matched based 

upon volume and length, but control and experimental conditions are often matched as closely as 

possible so that any differences can be attributed to the one aspect that is different.  

An additional possible cause of the null result is that the warnings were provided before 

the hacking attempt occurred and both warnings lead to sufficient boosts in SA for the 

participant to quickly respond to the hacking attempt. If drivers in both warning groups were 

warned ahead of time for an extended period, such as in this experiment, it may have led to 

sufficient time for the driver to gather SA in time to respond to the hacking attempt. This 

suggestion is supported by the very high mean TTC scores for both warning groups that were 

found in this study. In hindsight, presenting the warnings simultaneously with the hacking 

attempt may have provided a scenario wherein the semantic value of the warning had an effect 

because the participants would not already be at higher SA levels before the hacking attempt 

even began.  

In conclusion, there was no significant difference for TTC between the semantic and non-

semantic warnings. This finding suggests that the content of the warning does not affect the 

driver’s ability to respond quickly to the warning, but these results are not in accordance with the 

theoretical and experimental findings in the warning and SA literature. This null result is 

possibly due to the similarity between the warnings and the fact that both warnings were 

provided before the hacking attempt occurred. The early implementation of the warnings may 

have elevated the participants SA levels sufficiently enough to lead to the overall large TTC 

values for both groups and masking the potential benefit of the semantic content that was found 

in past research. 
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Level of Automation and Warning Content  

Our final hypothesis pertained to the potential interaction between warning type and level 

of automation such that the addition of the semantic warning in the manual driving condition 

would have less of a benefit for TTC values than the addition of the semantic warning in the 

automated driving condition. It was expected that the addition of semantic information would not 

benefit the manual group as much due to the manual drivers elevated SA levels, but it would 

benefit automated drivers who were more “out-of-the-loop” and had lower SA levels. The 

current experiment did not find a significant interaction between level of automation and 

warning conditions for TTC. As a result, we were unable to provide support for Hypothesis 5.  

Previous research by Chang et al. (2008) proposed that the benefit of the semantic 

warning was due to the additional increase in SA that the extra content provided. The expectation 

that the SA change was the driving factor for the benefit of the semantic content is an important 

factor that can be found in the level of automation literature as well. Gold et al. (2013) proposed 

that the faster TTC values they found for the manual group were due to increased levels of SA 

for participants that were manually controlling the vehicle. If manual driving is predicted to lead 

to higher levels of SA than automated driving, it stands to reason that the SA benefit of the 

semantic warning may not be as beneficial for manual drivers due to their already elevated SA 

when compared to the automated driving group. However, the hypothesized interaction was not 

found in the results of the current study. 

The results of the current experiment did not show a significant interaction between the 

level of automation condition and warning condition as was hypothesized and predicted based on 

previous research. This null result is potentially due to the fact that the manual and automated 

driving groups were not different based on TTC or response method suggesting similar levels of 
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SA for both levels of automation. In addition, there was no significant difference between the 

semantic and non-semantic warning conditions for TTC which suggests that both warnings 

provided sufficient boosts to SA prior to the hacking attempt which led to the high collected TTC 

values for response from both warning groups. If there was no benefit of manual driving that 

lead to higher SA levels and no benefit of semantic warning that lead to higher SA levels, then 

the expectation of a significant interaction between the two IVs is far less likely. It is also 

possible that by providing the warnings before the hacking attempt the participants were able to 

reach such elevated levels of SA that neither IV was able to significantly benefit one group over 

the other.  

In summary, Hypothesis 5 regarding an interaction between level of automation and 

warning condition was not supported. This suggests that level of automation and warning type 

are not related but this finding is not in line with the theoretical and experimental findings in the 

related literature. This null finding is possibly due to a lack of main effects for each IV and the 

ceiling effect caused by the preemptive implementation of both warning types. Further research 

on how level of automation and warning type are related to one another is needed to bridge the 

gap between the warning and level of automation literature. This future research is of extra 

importance to transportation researchers, due to the high prevalence of auditory warning usage in 

the driving domain.  

Reported Engagement  

The first item on the post experiment survey given to the participants asked participants 

to rate their agreement with a statement suggesting that they were engaged in driving or 

monitoring the vehicle for the entire ride. The results showed no difference across the groups. 

This finding suggests that participants in each group reported that they were engaged in the 
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drive/ride similarly regardless of level of automation and warning content. This finding also 

provides support that the random assignment used during the experiments worked sufficiently. In 

conclusion, participants reported being engaged regardless of experimental group. 

Reported Warning Realization  

The second item on the post experiment survey asked all participants if they noticed a 

warning during the drive and participants responded with a yes or no response. We did not find a 

significant difference in the number of participants who reported noticing the warning based 

upon the level of automation they were assigned. This null result suggests that noticing warnings 

is not affected by whether manual or automated driving is in use when the warning is 

implemented but this null finding may also be due to Type 1 error. However, we did find a 

significant effect of warning type on the number of participants who reported noticing the 

warning. Specifically, participants who received the non-semantic warning reported not noticing 

a warning more frequently than participants who received the semantic warning. This finding 

suggests that semantic warnings are superior if recognizing an auditory input as a warning is the 

goal. Based on this finding, we suggest that semantic warnings should be used when attempting 

to warn a participant about an upcoming critical event regardless of the vehicle’s level of 

automation. Using semantic warnings to warn participants of incoming critical events may 

increase the likelihood that individuals recognize the warning as a warning and respond to it 

rather than attributing the warning to ambient noise and ignoring the warning. 

Reported Warning Interpretation  

The third item on the post experiment survey asked the participants that did report 

noticing the warning what they interpreted the warning to represent. It was a multiple-choice 

question and the correct answer was a vehicle hacking attempt and all other responses were 
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scored as not a vehicle hacking attempt. Understanding what the warning represents is essential 

to making the appropriate response in many cases and those who received semantic warnings 

appeared better at determining what the warning meant based on their self-report responses. 

There was no significant effect of level of automation on the number of correct interpretations of 

the warning, suggesting that warnings are interpreted regardless of the level of automation used 

in the vehicle. However, there was a significant effect of warning condition on the interpretation 

of the warning. Those who received the semantic warning were more likely to correctly interpret 

the warning as caused by a vehicle hacking attempt. This finding may potentially be due to the 

inclusion of what the warning represents in the semantic warning, but that is exactly what the 

addition of semantic content is supposed to provide.  

The large number of incorrect interpretations of the warnings as system malfunctions or 

other issues may have influenced how quickly and successfully participants responded to the 

hacking attempt critical event. Had participants effectively interpreted the warnings as hacking 

attempt warnings, the urgency, method, and success of their responses may have changed or 

improved. In conclusion, the participants did not accurately interpret the cause of the warning, 

most of the time, and this inconsistency may have affected the way participants responded to the 

warnings across all aspects of the study. In summary, the level of automation present did not 

affect the interpretation of the warning, but the warning type received did. This finding suggests 

that semantic warnings are more often correctly identified than non-semantic warnings. Based on 

this, we suggest that semantic warnings should be used when the warning represents a novel or 

complex issue such as a vehicle hacking attempt. The additional information in semantic 

warnings may be of added benefit when novel situations occur. Any extra information about 

never experienced scenarios while driving may lead to better responses and more avoided 
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accidents compared to generic auditory warnings that do not provide any context for the 

incoming critical event. More research on the effect of warning condition is needed to further 

explore these findings and provide additional advice for vehicle system development.  

Reported Warning Urgency  

Participants that responded that they noticed the warning on the previous question in the 

post experiment survey were also asked to give their level of agreement that the warning they 

received was urgent. The current study did not find a significant effect of level of automation on 

the reported urgency level of the received warning consistent with behavioral data. In contrast, 

the current study did find a significant effect of warning type on the reported urgency level of the 

received warning and a significant interaction between level of automation and warning type.  

Hellier et al. (2002) proposed that warnings that contained speech/semantic information 

were more capable of expressing the urgency of the warning because the warning potentially 

includes a description of what the warning represents. Hellier et al.’s theory was partially 

supported in the current study by the significantly lower urgency rating for the non-semantic 

warning in the manual driving group. However, Hellier and colleagues’ theory was not supported 

in the automated driving condition where the urgency ratings of both the semantic and non-

semantic warnings were not significantly different.  

Based on the self-report data from participants in the manual driving group, the semantic 

warnings were rated as urgent more frequently than the non-semantic warnings. The current 

results support this finding, suggesting that the semantic content within the auditory warning 

may lead to higher levels of perceived urgency compared to non-semantic warnings depending 

on the level of automation in use. In the current experiment, the implementation of a semantic 

warning lead to more urgent ratings when manual driving was in use, but not when automated 
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driving was in use. This may suggest that semantic warnings are only beneficial in manual 

driving or that warnings are interpreted differently when automated driving is used. Further 

research is needed to understand how level of automation and warning type affect warning 

urgency in the driving domain.  

Reported Knowledge of Vehicle Hacking  

Another major question given to all participants in the experiment pertained to whether or 

not the participant was previously aware of the potential for vehicle hacking and the participants 

responded with a yes or no answer. Of the seventy-two participants that received the question, 

less than 20% had previously heard of vehicle hacking. This suggests that vehicle hacking is not 

an issue that most people may be aware of. This finding accords with McManus et al.’s (2018) 

finding wherein most of the participants were unaware of the potential for vehicle hacking unless 

told otherwise. 

Next, the participants were asked whether they were more concerned with automated 

vehicle hacking, technical based automation failure, both, or neither. For participants in the 

manual and automated driving groups, most participants reported that they were concerned with 

both, but technical automation failure was the next most prevalent answer. The self-report data 

pertaining to concern suggest that while most participants had not heard of vehicle hacking 

previously, that it is of similar concern to technical automation failure. This result may be due to 

their recent experience with a simulated vehicle hacking attempt. While not conclusive, these 

results suggest that when participants are aware of the potential for vehicle hacking attempts it is 

an important concern they have with automated driving in the future. 

 

  



www.manaraa.com

 74 
 

Level of Automation and Maximum Steering Wheel Angle  

In addition to the planned dependent variables, multiple exploratory measures of hacking 

attempt response quality were also collected. The first measure of response quality that was 

analyzed was maximum steering wheel angle (Shen & Neyens, 2017). The current study found a 

significant effect of level of automation on maximum steering wheel angle. Specifically, 

participants in the manual driving group had significantly smaller maximum steering wheel angle 

values than participants in the automated driving group. This finding suggests that the responses 

to the critical event were more severe when in the automated driving group than in the manual 

driving group.  

The benefit of manual driving for maximum steering wheel angle may be due to a couple 

of reasons. For instance, the participants in the manual driving group had larger amount of 

previous experience with the simulator steering wheel even though participants in both groups 

were required to spend five minutes manually driving the vehicle in the practice portion of the 

experiment. In juxtaposition, it may be due to higher levels of SA for manual drivers. 

Regardless, this finding is consistent with the previous finding by Shen and Neyens (2017) and 

provides additional evidence that responses to critical events may be less severe for manual 

drivers than automated drivers. In conclusion, participants in the manual driving group had less 

severe responses to the vehicle hacking attempt based on maximum steering wheel angle. This 

finding is potentially due to past experience with the steering wheel or boosted levels of SA for 

manual drivers. Based on this finding we suggest that manual driving be used when vehicle 

hacking attempts are imminent in order to minimize the maximum steering wheel angle achieved 

when responding to a vehicle hacking attempt.  
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Warning Condition and Maximum Steering Wheel Angle 

In addition to level of automation, maximum steering wheel angle was also exploratorily 

examined across warning condition. The results of the experiment showed an effect of warning 

condition that approached significance.   

Though the effect only approached significance, semantic warning recipients had larger 

maximum steering wheel angles, potentially due to their understanding of the urgency of the 

situation. This suggestion is supported by the difference in how many people correctly identified 

the warning they received as a warning. Far less participants in the non-semantic warning 

condition reported that they received a warning at all. The higher frequency of understanding the 

warning and the recognition of its presence and urgency may have led to the more severe 

maximum steering wheel turn values for the semantic condition. This effect, that approached 

significance, may have been amplified by the participants lack of familiarity with the potential 

for vehicle hacking attempts.  

Further research is needed to determine the effect of warning type on the safety of critical 

event response in order for recommendations to be made. Additional measures of response 

quality would provide further information about the quality of participant responses and provide 

further insight into how warnings affect driver’s response quality.  

Maximum Steering Wheel Angle Over Time  

In addition to maximum steering wheel angle, we examined maximum steering wheel 

angle over time. This measure may provide additional insight by incorporating how quickly the 

maximum wheel turn was performed with lower times suggesting more severe turns and 

potentially more dangerous driving. The current experiment did not produce a significant 

difference in maximum steering wheel angle over time between manual and automated driving. 
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The current experiment also did not find a significant difference for maximum steering wheel 

angle over time between the warning conditions. These null results are potentially due to the 

consistent seven second time from the onset of the warning until the end of the hack that resulted 

in a crash for the participants the vast majority of the time. In conclusion, there were no 

significant effects of warning type or level of automation conditions for maximum steering 

wheel turn over time which is potentially due to the relatively short time window for response of 

seven seconds. This finding may suggest that maximum steering wheel angle over time is not as 

useful as other measures of response quality, but further research using this dependent variable is 

needed to make that determination.  

Maximum Resulting Acceleration  

Maximum resulting acceleration is a measure of response quality calculated by using the 

lateral and longitudinal accelerations of the vehicle. The current experiment did not find a 

significant difference for maximum resulting acceleration due to level of automation. Maximum 

resulting acceleration was examined by Gold and colleagues (2013) and Shen and Neyens (2017) 

with varying results. Gold et al. (2013) found a significant effect of advanced warning time (5 

seconds vs 7 seconds) for maximum resulting acceleration but did not find a significant 

difference between the manual and automated driving groups.  

 The current experiment did not produce a significant difference in maximum resulting 

acceleration between manual and automated driving. This is consistent with the result of Gold et 

al. (2013) who also did not find an effect of level of automation for maximum resulting 

acceleration. The current study did not measure maximum resulting acceleration at multiple 

points and used the largest maximum resulting acceleration for each participant which prevented 

direct comparison to the Shen and Neyens (2017) study.  
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 The current experiment did not produce a significant difference in maximum resulting 

acceleration between the semantic and non-semantic warning conditions. It was not expected that 

there would be a significant difference for semantic and non-semantic warning based on the 

previous literature, but it was exploratorily analyzed since there was a significant effect for a 

warning related variable in the Gold et al. (2013) study. In conclusion, maximum resulting 

acceleration was not significantly affected by driving or warning condition in the current 

experiment which is neither consistent nor inconsistent with the past literature due to the varying 

results found in past experiments for maximum resulting acceleration.  

Theoretical Implications 

 The level of automation and warning literatures contain numerous studies with differing 

interpretations of how the level of automation and warnings present in the vehicle affects 

participants responses to critical events. The current study sought to further explore this concept 

by manipulating the level of automation and warning type and implementing a novel and more 

difficult critical event scenario. The implementation of a novel and complex critical event was 

determined based on suggestions from previous literature and the growing potential for vehicle 

hacking. The results of the study suggest that level of automation and warning type do not 

significantly affect the method of response, number of successful responses, or TTC of the 

participants. The current study’s findings are in accordance with some past findings but not with 

others. This suggests that the effect level of automation and warning type have in critical events 

scenarios may vary depending on specific aspects of the critical event. The lack of consistent 

findings in this domain, including the current study, suggests that a clear theoretical 

understanding of how level of automation and warning type affect responses to critical events 

may not be present.  
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Past research has suggested that the theory of SA can be used to explain the differences 

due to level of automation and warning type and SA was the basis for the current study’s 

expected results. SA was expected to be different based on the level of automation and warning 

used at the time of the critical event, but due to the current study not measuring SA, direct 

interpretations cannot be made. Future studies should include direct measures of SA in order to 

further understand the theoretical implication that level of automation and warning type have on 

SA in surface transportation. While SA was not directly measured in the current study, the 

results of the experiment may suggest that SA changes due to level of automation are not present 

during emergency response scenarios such as the vehicle hacking attempt used in the current 

study. If emergency scenarios result in SA not accurately explaining how participants responded, 

then further theory may be needed to explain participant responses in emergency scenarios.  

In addition, the literature is unclear how warning type and level of automation affect SA 

when used simultaneously in response to a critical event. The current study found that early 

auditory warning implementation may have mitigated the potential difference in SA due to the 

level of automation present by capturing the participant’s attention before the critical event. This 

led to very quick responses to the impending vehicle hacking attempt regardless of the level of 

automation in use. If preemptive auditory warnings lead to fast responses to the critical event, 

then the SA difference due to level of automation may be mitigated because the participant is 

already attending to their environment and are prepared to respond thanks to the preemptive 

warning they received. Further research is needed to understand how SA is affected by level of 

automation and warning type. When the warning is implemented may need to be accounted for 

in future research. SA is a complex concept and direct measurement of SA is needed in future 
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studies to make clear interpretations of how different warning characteristics and levels of 

automation affect individuals SA during critical events.  

Design Implications 

 The results of the current experiment were sporadic, and at times, not consistent with the 

level of automation, situation awareness, and warning literature in the surface transportation 

domain. Many of the expected differences were not found partly as a result of very large TTC 

values and a limited number of successful responses. Despite this, useful information can be 

gleaned in order to make suggestions for the design of future vehicle automation and warning 

systems. Firstly, the results of the experiment suggest that warnings given prior to the onset of 

the critical event lead to very high TTC values regardless of warning type or level of automation. 

Based on this finding, it may be beneficial to provide warnings in advance of the critical event 

when possible. Secondly, semantic warnings were found to be identified as warnings 

significantly more frequently than non-semantic warnings. Based on this finding, we suggest that 

semantic warnings should be used when auditory warnings are used to inform the driver that a 

critical event is about to occur. In addition, there was a benefit of semantic warnings when 

participants were asked to identify the cause of the warning. We suggest that when novel critical 

events, such as vehicle hacking attempts, are possible, semantic warnings should be used so the 

driver is more likely to appropriately diagnose the cause of the warning. When critical event 

response quality was measured using maximum steering wheel angle, we found a benefit of 

manual driving. Based on this finding, we suggest that manual driving should be implemented 

when complex vehicle responses are needed from the driver. In conclusion, multiple of the 

results from the current study suggest that manual driving and semantic warnings may be 

preferable when drivers need to respond to complex critical events, like vehicle hacking 
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attempts. These findings should be taken into account when designing future warning and 

automation systems.  

Study Limitations  

The current experiment did not provide many of the expected significant differences that 

were predicted by the researcher’s hypotheses and the previous literature. One major potential 

reason for this was the implementation of the warnings before the hack occurred which led to a 

ceiling effect and very high TTC values for all participants. Three of the experiments hypotheses 

pertained to TTC so the elevated TTC values across the board potentially led to the null results. 

The use of a low fidelity driving simulator could also have affected the results due to less tactile 

feedback pertaining to their control inputs and their effect on the vehicle compared to actual 

vehicles. Additionally, simulator use may have resulted in less actual perceived urgency and 

concern than in an actual vehicle due to a lack of genuine danger resulting from the vehicle 

hacking attempt.  

There were also different amounts of participant in our experimental groups who reported 

previous knowledge of vehicle hacking. Those who were aware of vehicle hacking previously 

may have different responses than those who hadn’t and the unequal distribution across 

experimental groups is a limitation of the study. The sample was also heavily female and African 

American and, as such, may not have been representative of the overall driving population. The 

study was also limited by the age of the participants who were all between the ages of 18-23 

years old and as such does not accurately depict the overall driving population.  

The novelty of vehicle hacking may also have played a part since most of the participants 

had never heard of vehicle hacking before the study. The fact that the participants likely never 

experienced any driving situation like this and its lack of similarities to past studies is a potential 
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explanation for why the results of the current study did not match the previous literature or our 

hypotheses. Lastly, and potentially most importantly, the hacking attempt scenario presented to 

the drivers was difficult due to the complexity of the surrounding environment and the short time 

period given to the participants to maneuver through them. This may have led to the majority of 

participants failing to successfully respond to the hacking attempt despite the high TTC values 

found across all experimental groups. 

Future Directions  

The use of automation and warning in vehicles and the prevalence of vehicle hacking 

attempts are likely to continue to increase. Future research on level of automation and warning 

implementation can learn from this study’s findings. Future studies may consider using a 

multiple vehicle hacking attempts and more diverse automation levels. The type of hacking 

attempt and its complexity is also a factor that could potentially be manipulated. Different 

warning types such as tactile warnings could be compared to auditory warnings and measures of 

urgency and pleasantness could be implemented. Importantly, the warning implementation time 

could also be manipulated such that warnings are implemented as the hacking attempt begins and 

compared to preemptive warnings like those used in this study. In addition, different driving 

populations and higher fidelity simulators may provide further insight to how level of automation 

and warning type affect driver responses to novel vehicle hacking attempts.  
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CHAPTER VI 

CONCLUSIONS 

 The current experiment attempted to examine whether the level of automation and the 

content of the warning effected participants responses to a complex and novel take over response 

scenario in the form of a vehicle hacking attempt. The current results indicate that there was no 

significant effect of level of automation condition or warning condition on TTC values, 

successful response rate, or reaction method. These findings are contrary to the previous 

literature and are potentially due to various factors of the experimental scenario such as warning 

implementation time and hacking scenario complexity. Despite null results for the hypothesized 

analyses, multiple analyses found significant benefits for manual driving and semantic warnings 

as well as a significant interaction between level of automation and warning type for reported 

urgency. Additionally, preemptive warning implementation resulted in very high TTC values 

across the board suggesting warnings implemented prior to the critical event may result in quick 

responses to the warning. Further research is needed to clarify how level of automation and 

warning type interact and affect how participants respond to vehicle hacking attempts. However, 

the current study provides evidence that suggests manual driving and semantic warnings can be 

beneficial for warning interpretation and response quality when responding to a complex and 

novel critical event like a vehicle hacking attempt.  

 

 

 

 

 



www.manaraa.com

 83 
 

REFERENCES 

Amoozadeh, M., Raghuramu, A., Chuah, C. N., Ghosal, D., Zhang, H. M., Rowe, J., & Levitt, K. 

(2015). Security vulnerabilities of connected vehicle streams and their impact on cooperative 

driving. IEEE Communications Magazine, 53, 126-132. 

Baldwin, C. L. (2011). Verbal collision avoidance messages during simulated driving: perceived 

urgency, alerting effectiveness and annoyance. Ergonomics, 54, 328-337. 

Baldwin, C. L., & May, J. F. (2005). Verbal collision avoidance messages of varying perceived 

urgency reduce crashes in high risk scenarios. Proceedings of the International Driving 

Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, 3, 128-

133.  

Baldwin, C. L., & Moore, C. (2002). Perceived urgency, alerting effectiveness and annoyance of 

verbal collision avoidance system messages. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, 46, 1848-1852. 

Bansal, P., Kockelman, K. M., & Singh, A. (2016). Assessing public opinions of and interest in new 

vehicle technologies: an Austin perspective. Transportation Research Part C: Emerging 

Technologies, 67, 1-14. 

Bazilinskyy, P., Kyriakidis, M., & de Winter, J. (2015). An International Crowdsourcing Study into 

People's Statements on Fully Automated Driving. Procedia Manufacturing, 3, 2534-2542. 

Ben-Asher, N., & Gonzalez, C. (2015). Effects of cyber security knowledge on attack 

detection. Computers in Human Behavior, 48, 51-61. 

Carsten, O., Lai, F. C., Barnard, Y., Jamson, A. H., & Merat, N. (2012). Control task substitution in 

semiautomated driving: Does it matter what aspects are automated?. Human Factors, 54, 

747-761. 



www.manaraa.com

 84 
 

Casley, S. V., Jardim, A. S., & Quartulli, A. M. (2013). A study of public acceptance of autonomous 

cars. (Unpublished bachelor’s dissertation) Worcester Polytechnic Institute, Worchester, 

Massachusetts. 

Chang, S. H., Lin, C. Y., Fung, C. P., Hwang, J. R., & Doong, J. L. (2008). Driving performance 

assessment: effects of traffic accident location and alarm content. Accident Analysis & 

Prevention, 40, 1637-1643. 

de Winter, J. C., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise 

control and highly automated driving on workload and situation awareness: A review of the 

empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 

196-217. 

Edworthy, J., Walters, K., Hellier, E., & Weedon, B. (2000). Comparing speech and nonspeech 

warnings. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44, 

746-749.  

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human 

Factors, 37, 32-64. 

 Endsley, M. R. (1996). Automation and situation awareness. In R. Parasuraman & M. Mouloua 

(Eds.), Automation and human performance: Theory and applications (pp. 163-181). 

Mahwah, NJ: Lawrence Erlbaum. 

Endsley, M. R., & Garland, D. J. (2000). Theoretical underpinnings of situation awareness: A critical 

review. Situation Awareness Analysis and Measurement (pp. 1-24). Mahwah, NJ: Lawrence 

Erlbaum.  



www.manaraa.com

 85 
 

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power 

analysis program for the social, behavioral, and biomedical sciences. Behavior Research 

Methods, 39, 175-191. 

Federal Bureau of Investigation. (2016, March 17) Motor Vehicles Increasingly Vulnerable to 

Remote Exploits [Public Service Announcement]. Retrieved from: 

https://www.ic3.gov/media/2016/160317.aspx.  

Flemisch, F., Kelsch, J., Löper, C., Schieben, A., & Schindler, J. (2008). Automation spectrum, 

inner/outer compatibility and other potentially useful human factors concepts for assistance 

and automation. In D. de Waard, F.O. Flemisch, B. Lorenz, H. Oberheid, & K.A. Brookhuis 

(Eds.), Human Factors for Assistance and Automation (pp. 1-16). Maastricht, the 

Netherlands: Shaker Publishing. 

Gold, C., Damböck, D., Lorenz, L., & Bengler, K. (2013, September). “Take over!” How long does 

it take to get the driver back into the loop?. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, 57, 1938-1942.  

Gontar, P., Homans, H., Rostalski, M., Behrend, J., Dehais, F., & Bengler, K. (2018). Are pilots 

prepared for a cyber-attack? A human factors approach to the experimental evaluation of 

pilots' behavior. Journal of Air Transport Management, 69, 26-37. 

Ghosh, D., & Vogt, A. (2012). Outliers: An evaluation of methodologies. In Joint statistical 

meetings, 3455-3460.  San Diego, CA: American Statistical Association. 

Gravetter, F. J., & Wallnau, L. B. (2005). Essentials of statistics for the behavioral sciences. 

Belmont. CA: Wadsworth. 

Hellier, E., Edworthy, J., Weedon, B., Walters, K., & Adams, A. (2002). The perceived urgency of 

speech warnings: Semantics versus acoustics. Human Factors, 44, 1-17. 



www.manaraa.com

 86 
 

Hergeth, S., Lorenz, L., & Krems, J. F. (2017). Prior familiarization with takeover requests affects 

drivers’ takeover performance and automation trust. Human factors, 59, 457-470. 

Horswill, M. S., & McKenna, F. P. (2004). Drivers’ hazard perception ability: Situation awareness 

on the road. In S. Barnbury & S. Tremblay (Eds.), A Cognitive Approach to Situation 

Awareness: Theory and Application (pp. 155-175). Aldershot, UK: Ashgate. 

Kaber, D. B., & Endsley, M. R. (2004). The effects of level of automation and adaptive automation 

on human performance, situation awareness and workload in a dynamic control 

task. Theoretical Issues in Ergonomics Science, 5, 113-153. 

Kessel, C. J., & Wickens, C. D. (1982). The transfer of failure-detection skills between monitoring 

and controlling dynamic systems. Human Factors, 24, 49-60. 

Kyriakidis, M., Happee, R., & de Winter, J. C. (2015). Public opinion on automated driving: Results 

of an international questionnaire among 5000 respondents. Transportation Research Part F: 

Traffic Psychology and Behaviour, 32, 127-140. 

McKeown, D., & Isherwood, S. (2007). Mapping candidate within-vehicle auditory displays to their 

referents. Human Factors, 49, 417-428. 

McManus, W., Chen, J., Mishler, S., (2018). Automated Vehicle Hacking: An Examination of Public 

Understanding and Priming. Poster presented at 2018 American Psychological Association 

Technology Mind and Society Conference, Washington D.C.  

Menon, N. (2015). Consumer Perception and Anticipated Adoption of Autonomous Vehicle 

Technology: Results from Multi-Population Surveys (Doctoral Dissertation).  

Merat, N., Jamson, A. H., Lai, F. C., & Carsten, O. (2012). Highly automated driving, secondary 

task performance, and driver state. Human Factors, 54, 762-771. 



www.manaraa.com

 87 
 

National Research Council. (2009). Technology, Policy, Law, and Ethics Regarding US Acquisition 

and Use of Cyberattack Capabilities. National Academies Press. 

Nunes, A., Reimer, B., & Coughlin, J. F. (2018). People must retain control of autonomous 

vehicles. Nature, 556, 169-171. 

Old Dominion University, Social Science Research Center. (2015). Life in Hampton Roads Survey 

Press Release #4 [Press release]. Retrieved November 20, 2018, from 

https://www.odu.edu/content/dam/odu/col-dept/ssrc/docs/press-release-4-transportation-

2015.pdf.  

Parasuraman, R., & Manzey, D. H. (2010). Complacency and bias in human use of automation: An 

attentional integration. Human Factors, 52, 381-410. 

Petermeijer, S., Doubek, F., & de Winter, J. (2017). Driver response times to auditory, visual, and 

tactile take-over requests: A simulator study with 101 participants. In A. Basu, W. Perdrycz, 

& X. Zabuli (Eds.), Proceedings of the IEEE International Conferences on Systems, Man, 

and Cybernetics (SMC 2017) (pp.1505-1510). Piscataway, NJ: IEEE. 

Politis, I., Brewster, S., & Pollick, F. (2015, April). To beep or not to beep?: Comparing abstract 

versus language-based multimodal driver displays. Proceedings of the ACM Conference on 

Human Factors in Computing Systems, 33, 3971-3980. 

Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014). How traffic situations and non-

driving related tasks affect the take-over quality in highly automated driving. In Proceedings 

of the human factors and ergonomics society annual meeting, 58, 2063-2067. 

Sawyer, S. F. (2009). Analysis of variance: the fundamental concepts. Journal of Manual & 

Manipulative Therapy, 17, 27E-38E. 



www.manaraa.com

 88 
 

Shen, S., & Neyens, D. M. (2017). Assessing drivers' response during automated driver support 

system failures with non-driving tasks. Journal of Safety Research, 61, 149-155. 

Schoettle, B., & Sivak, M. (2014). Public opinion about self-driving vehicles in China, India, Japan, 

the US, the UK, and Australia. (Transportation Research Institute No. UMTRI-2014-30.) 

Retrieved from University of Michigan Library website: 

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/109433/103139.pdf. 

Strand, N., Nilsson, J., Karlsson, I. M., & Nilsson, L. (2014). Semi-automated versus highly 

automated driving in critical situations caused by automation failures. Transportation 

Research Part F: Traffic Psychology and Behaviour, 27, 218-228. 

Taxonomy, S. A. E. (2018). Definitions for terms related to on-road motor vehicle automated driving 

systems. Technical report, SAE International. 

Wetton, M. A., Horswill, M. S., Hatherly, C., Wood, J. M., Pachana, N. A., & Anstey, K. J. (2010). 

The development and validation of two complementary measures of drivers’ hazard 

perception ability. Accident Analysis & Prevention, 42, 1232-1239. 

Wickens, C. D., & Kessel, C. (1979). The effects of participatory mode and task workload on the 

detection of dynamic system failures. IEEE Transactions on Systems, Man, and 

Cybernetics, 9, 24-34. 

Wickens, C. D., & Kessel, C. (1981). Failure detection in dynamic systems. Human Detection and 

Diagnosis of System Failures, 15, 155-169.  

Yamani, Y., & Horrey, W. J. (2018). A theoretical model of human-automation interaction grounded 

in resource allocation policy during automated driving. International Journal of Human 

Factors and Ergonomics, 5, 225-239.

  



www.manaraa.com

 89 
 

APPENDIX A 

POWER ANALYSIS RESULTS 

 

The power analysis (shown in the graph above) indicates that to achieve a statistical power of 

.80, 72 participants were needed with 18 in each group.  
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APPENDIX B 

STIMULI AND APPARATUS SETUP 
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Appendix C 

DEMOGRAPHICS FORM 
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APPENDIX D 

DRIVER EXPERIENCE QUESTIONNAIRE (ADAPTED FROM KYRIAKIDIS, 

HAPPEE, & DE WINTER, 2015) 

1. What is your primary mode of transportation? 

1 Private Vehicle  

2 Public Transportation 

3 Motorcycle 

4 Walking/cycling 

5 Other 

2. At what age did you receive your first driver’s license? 

3. On average, how frequently did you drive a vehicle in the last 12 months? 

1 Never 

2 Rarely 

3 Sometimes 

4 Often 

5 Everyday 

4. Do you drive a vehicle to school or work?  

Yes  

No 

5. About how many miles did you drive in the last 12 months? Please tell us in the box   

below. 

6. How many accidents were you involved in in the last three years? Please tell us in the box 

below.  
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APPENDIX E 

PARTICIPANT EXPERIMENTAL OPINION SURVEY 

1. You were engaged in monitoring the automated driving system for the entire ride. 

1 Strongly Disagree 

2 Disagree 

3 Neither Agree or Disagree 

4 Agree 

5 Strongly Agree 

 

2. Did you notice a warning during the drive? 

Yes  

No  

 

3. You perceived the warning you received to be urgent. 

1 Strongly Disagree 

2 Disagree 

3 Neither Agree or Disagree 

4 Agree 

      5 Strongly Agree 

 

4. What did the warning you received mean? Please explain in the text box provided.  

5. What did the warning you received represent? 

A. A system malfunction 

B. An automation failure 

C. A vehicle hacking attempt 

D. Low fuel level 

 

6. What do you think the purpose of the study was? Please explain in the text box provided. 

 

7. Were you aware of the potential for vehicle hacking before the experiment? 

Yes 

No 

 

8. Are you concerned with automated vehicle hacking more or less than automation failure 

due to technical failure in the surface transportation domain? 

I am more concerned with automated vehicle hacking.  

I am more concerned with automation failure. 

Not concerned with either 

 

9. What are your major concerns with automation in cars? Please list them in the text box 

provided. 
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